
NASA Contractor Report 189649

J

,W -6 J_.../
f

i2v6
!

.ii

Verifying the Interactive Convergence
Clock Synchronization Algorithm

Using the Boyer-Moore Theorem Prover

William D. Young

Computational Logic, Inc.
Austin, Texas

Contract NAS1-18878

April 1992

N,-ihol1_jl Aeronauhos and

,-,P, lce Adm n ;lraflorl

Langley Research Cenler

Hamplon, Virginia 23665-5225

(NASA-CR-I_o_9) VERIFYING THE

INTERACTIVE C_NVERGENCE CLOCK

SYNCHRON|ZATInN ALGORITHM USING THE

60Y_R-MOO_E THEOREM PROVER ¢inal

Report (Computational Logic) 46 p

N92-31158

Unc I as

G3/62 0115133

Table of Contents

1. Introduction .. 1

2. The Interactive Convcrgcncc Clock Synchronization Algorithm 2
3. Specifying the ICCSA in the Boycr-Moom Logic 2

3.1. Computing with Rationals ... 3
3.2. Uses of CONSTRAIN ... 5
3.3.DEFN-SK 7

3.4.Avoiding Higher Order Functions ... 9

4.AspectsoftheProof,... I0
4.1. Restraining the Prover .. 10
4.2. Orderof Steps in the Proof .. 10
4,3, Proof Encapsulation .. 12
4.4. Syntax .. 13

5. Conclusions .. 13

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:

Some Quantities Required for Specifying the ICCSA
CONSTRAIN Introducing ICCSA Parameters
EHDM and Boyer-Moore Versions of the Same Lemma
Theorems Generated for a DEFN-SK+ Event
Proof of SUBLEt'a,_A-A Showing USE Hints

3
6
7
8

11

ii

1. Introduction

The application of formal methods to the analysis of computing systems promises to provide higher and higher

levels of assurance as the sophistication of our tools and techniques increases. Improvements in tools and

techniques come about as we pit the current state of the art against new and challenging problems. A promising area

for the application of formal methods is in real-time and distributed computing. Some of the algorithms in this area

are both subtle and important. Their proofs are an ideal testing ground for formal methods because they involve

detailed and sophisticated reasoning which is challenging even for a competent human mathematician. We believe

that formal methods are already demonstrating that they can make a genuine contribution toward the clarity and

correctness of these algorithms [15, 3].

One important algorithm in this field is the Interactive Convergence Clock Synchronization Algorithm (ICCSA) of

Lamport and Melliar-Smith [13]. This algorithm maintains approximate synchronization among a number of clocks

even when the clocks begin running at slightly different times, run at slightly varying rates, and some percentage of

them may be faulty. The presentation of Lamport and MeUiar-Smith both develops the algorithm and states

formally the assumptions and desired properties required to state and prove its correctness properties.

A mechanical verification of the algorithm using EHDM was performed by John Rushby and Friedrich yon Henke

and described in [15, 16]. The EHDM effort resulted is a completely formal presentation of the algorithm and its

proof, a presentation which is arguably somewhat clearer and more rigorous than the original published proof.

Rushby and von Henke challenged users of proof systems other than EHDM as follows.

We found that EHDM served us reasonably well; we do not know whether other specification and
verification environments would have fared as well or better. [W]e invite the developers and users of

other verification systems to repeat the experiment described here. We suggest the Interactive
Convergence Clock Synchronization Algorithm is a paradigmatic example of a problem where formal
verification can show its value and a verification system can demonstrate its capabilities; it is a "real"
rather than an artificial problem, its verification is large enough to be challenging without being

overwhelming, it requires a couple of fairly interesting supporting theories, and its proofs are quite
intricate and varied.

In response to this challenge and as part of an ongoing attempt to verify an implementation of the Interactive

Convergence Clock Synchronization Algorithm, we decided to undertake a proof of the correctness of the algorithm

using the Boyer-Moore theorem prover.

This note describes our approach to proving the ICCSA using the Boyer-Moore prover. Since our proof follows

closely that of Rushby and von Henke, we will not dwell on the details of the proof but assume that the reader is

familiar with their quite cogent description of the EHDM version of the proof [15]. Instead we concentrate on the

use of features of the Boyer-Moore logic and theorem prover which were especially helpful in the specification and

proof and on the differences from the Rushby and von Henke version. We assume that the reader is somewhat

familiar with the Boyer-Moore logic and theorem prover [4, 7]. We plan to follow this note with another paper

co-authored by John Rushby comparing and contrasting the EHDM approach and the Boyer-Moore approach.

This note is organized as follows. The next section introduces briefly the Interactive Convergence Clock

Synchronization Algorithm and the problem it is designed to solve, Sections 3 and 4 describe some interesting

aspects of the specification and proof, respectively, and some of the more significant ways in which these differ

from the EHDM version. Finally, section 5 contains some conclusions from this study.

2. The Interactive Convergence Clock Synchronization Algorithm

A difficult problem facing designers of systems which achieve fault-tolerance via redundant processing capability is
synchronizing the processors so that they deliver their results at approximately the "same time." One solution to

this problem is the Interactive Convergence Clock Synchronization Algorithm of Lamport and Melliar-Smith [13].

This algorithm maintains approximate synchronization among a number of clocks even when the clocks begin

running at slightly different times, run at slightly varying rates, and some percentage of them may be faulty.

We desire an algorithm in which each processor periodically resynchronizes with all of the other processors in such
a way that:

S 1. all nonfaulty clocks have approximately the same value at any time; and,

$2. the adjustment to any clock during a synchronization period is bounded.

Proving that any algorithm achieves these two conditions is difficult because it requires accounting for a number of

continually changing quantities, l Lamport and Melliar-Smith were able to prove that the ICCSA algorithm has

these properties. Their proof is quite detailed involving approximate reasoning and neglect of various terms.

Conceptually the algorithm operates as follows. Each processor Pi maintains an offset or correction to its private

(hardware) clock; the private clock value plus correction is the adjusted clock value. The correction is periodically

updated by adding to it the mean of the differences between Pi'S adjusted clock value and all other processors'

adjusted clock values. Any processor pj with adjusted value too divergent from Pi'S is assumed to be faulty and a

difference of 0 between Pi'S and pj's clocks is used in computing the mean.

Though the algorithm is conceptually quite simple, the statement of the correctness properties and their proof is

complex. The correctness of the aigorlthrn-]s stated in terms of certain quantities listed in figure 1 and others

computed in terms of them. The pioof shows that under certain conditions on the relationships among these

parameters, this algorithm does maintain adequate synchronization among n processes with at most m faulty
processes. Here adequate synchronization is defined in terms of formal statements of conditions S1 and $2 above.

A completely formal description of the algorithm and its correctness conditions is given by Rushby and yon

Henke [15]. Our formalization follows fairly closely the Rushby and von Henke version and is given as the

sequence of Boyer-Moore "events" in the appendix. In the following two sections we highlight features of the

Boyer-Moore logic and prover which were particularly helpful in our specification with emphasis on the differences
from the EHDM version.

3. Specifying the ICCSA in the Boyer-Moore Logic

Capturing formally the Interactive Convergence Clock Synchronization Algorithm within the Boyer-Moore logic
was a challenge despite the fact that we had as a model a fully formal version in EHDM. There ate difference in the

languages which make translating from one to the other nontrivial. In particular, EHDM allows full first order

quantification and uses higher-order functions in a manner which cannot be specified in the Boyer-Moore logic.

However, recent additions to the logic--particularly COt_STP,AIN and D_._'t_-SK--made our task much easier than
it otherwise would have been.

1In factl a proof of an implementation of the ICCSA algorithm was asserted to be "probably beyond the ability of any current mechanical
verifier" [141 .

n number of clocks.

m number of faulty clocks.

R clock time between synchronizations.

S clock time to perform the synchronization algorithm.

maximum real time skew between any two good clocks.

_0 maximum initial real time skew between any two good clocks.

maximum real time clock read error.

p maximum clock drift rate.

_2 maximum correction permitted.

Figure 1: Some Quantities Required for Specifying the ICCSA

3.1 Computing with Rationals

The Boyer-Moore logic provides as "primitives" the data types of booleans, naturals, literal atoms, negative
integers, and lists. Describing the ICCSA and proving its synchronization properties requires the manipulation of

numerous rational quantities. The Boyer-Moore "shell" mechanism allows the user to add new recursively defined

data types. The rationals have been added as a new shell and explored to some extent in some previous specification
efforts. Until recently, however, there has not been a well thought out library of definitions and rewrite rules for

rationals as have been developed for several other data types [1, 12]. Recently Matt Wilding of CLI has built a
useful library for the rationals; this library provided a solidbasisYor our proof.

The rationals library is built on top of an earlier library for the integers. 2 Operations defined include equality, the
various arithmetic operations on rationals, and the relational operator RLES SP. A number of useful rewrite rules are

proved about these functions and included in the library. On top of the basis provided by Wilding's library, we

defined some additional operations required for the ICCSA specification, such as rational absolute value, operations

coercing integers to rationals, and arithmetic operations taking both integer and rational arguments. Proving

properties of these functions was usually quite easy because the underlying library was well thought-out. This
contrasts with some earlier proof efforts [2, 9, 17] in which all theories had to be built "from scratch."

There are some quirks in dealing with rationals in the logic whqch are not present for most data types. In particular,
there are an infinite number of representations for each rational number. This leads to the need to reduce all

rationals to a canonical form before comparing them. All of the operations in Wilding's rationals library leave
rationals in reduced form.

Rational equality is defined in terms of these reduced forms:

(DEFN REQUAL (X Y)
(EQUAL (REDUCE X) (REDUCE Y))).

However, since the prover has extensive built-in heuristics for EQUAL, but not for REQUAL, it was convenient to

open up this definition whenever possible. This leads to a continual need to deal with terms of the form

(REDUCE X). Luckily, the rationals library contains an extensive collection of rewrites such as the following two

2A rational is represented as a pair of integers (RAT I ONAL T J) with appropriate con._traints on the signs of i and j.

4

for the RPLUS function which eliminates most appearances of the REDUCE operator.

(PROVE-LEMMA RPLUS-REDUCE (REWRITE)

(AND (EQUAL (RPLUS (REDUCE X) Y)

(RPLUS X Y))

(EQUAL (RPLUS X (REDUCE Y))

(RPLUS X Y))))

(PROVE-LEMMA REDUCE-RPLUS (REWRITE)

(EQUAL (REDUCE (RPLUS X Y))

(RPLUS X Y)))

These ubiquitous REDUCE expressions caused one oddity in the specification.
rewrite rules such as:

(PROVE-LEMMA RPLUS-RZEROP (REWRITE)

(IMPLIES (RZEROP X)

(AND (EQUAL (RPLUS X Y)

(EQUAL (RPLUS Y X)

(REDUCE Y))

(REDUCE Y)))))

The library contains a number of

However,usingthisrewriteruleanexpressionsuchas

(EQUAL (RHO) (RPLUS (RHO) (RATIONAL 0 i)))

rewrites to

(EQUAL (RHO) (REDUCE (RHO)))

which is not provable unless (RrtO) is known to be in reduced form, eg., if (RHO) is a constrained constant (see
section 3.2 below). This led to the need to require that most constrained constants be in reduced form.

This rather odd but innocuous requirement could be avoided by consistently using REQUAL rather than EQUAL

whenever referring to rational quantifies. However, even with extensive theory development, heuristic reasoning

support for REQUALwould not equal that ava_able for EQUAL. An experimental facility supporting reasoning with
congruence relations [8] might have alleviated some of this difficulty but was not used here.

The utility Of the ration_s-iibrary is greatly enlmnced by the addition of several useful metafunctions.

Metafunctions [5] are user-definod term simplification routines which are proven to preserve the
(evaluation) of the term to which they are applied. For example, a function in the rationals library "cancels"

complementary terms in a rationals rU'LUS expression. Proving that this function preserves the meaning (value) of
the term to which it is applied sanctions the installafion of this code as an additional SimpliScafion routine within the

prover. The code is installed automatically by the prover upon proof of the required _ms and replaces a
potentially infinite Collection of rewrite rules. - :_ : -....... -

The collection of metafunctions within the rationals library greatly simplifies reasoning about RPLUS, RTIHES, and

RLESSP expressions. We added an additional metalemma for the RLEQ (rationals less than ¢¢ equal) function.
This was not strictly necessary since RLEQ is defined in terms of REQUAL and RLESSP. However, to avoid the

explosion of cases on theorems involving many RLEQ hypotheses, we decided to develop a theory for RLEQ on top

of Wilding's rationals library and leave RLEQ disabled (so that it would not be automatically opened up by the
prover). We are not completely convinced of the wisdom of this decision.

3.2 Uses OfCONSTRAIN

As we saw in Section 2 above, the ICCSA is described in terms of a large number of integer and rational-valued

parameters; these are conceptually global constants for purposes of the specification. There is a sizable colectious

of assumptions about the relative sizes of these quantities. In the Rushby and yon Henke specification, these are

given as EHDM axioms. Within the Boyer-Moore logic there are various options for how to introduce these
constants into the specification:

• pass them as parameters to each function requiring them and add the assumptions as explicit
hypotheses on each theorem requiring them;

• define each constant as a declared function of no arguments and add any required assumptions as
axioms;

• use the Boyer-Moore CONSTRAIN [6] mechanism to introduce the constants as new function symbols
and introduce the assumptions axiomatically wi_n the CONSTRAIN.

The advantage of this final approach is that it guarantees that the introduced axioms are consistent without cluttering

up definitions and theorems with a multitude of additional parameters and hypotheses. Moreover, using a

CONSTRAZN event to introduce a new function symbol avoids the overspecification often occasioned by

introducing functions via explicit definitions; only the required properties of the function need _ specified.

A CONSTRAIN event inlroduces one or more function symbols along with axioms which they must satisfy. To

guarantee the consistency of the axioms, the user must supply witness functions which satisfy the axioms. For

example, we model the function A_!q that computes the difference in clock values between processes p and q in
period i, with the CONSTRAIN event:

(CONSTRAIN DELTA2-INTRO (REWRITE)
(AND (RATIONALP (DELTA2 R P I))

(EQUAL (DELTA2 P P I) (RATIONAL 0 i))
(IMPLIES (NOT (NUMBERP I))

(EQUAL (DELTA2 R P I)

(DELTA2 R P 0)))
(EQUAL (REDUCE (DELTA2 P Q I)),

(DELTA2 P Q I)))
((DELTA2 (LAMBDA (R P I) (RATIONAL 0 1)))))

This asserts that the newly introduced function DELTA2 is rational-valued, returns zero as the difference from a

process's own clock value, always coerces it's third argument to a natural number, and returns a rational in reduced

form. 3 We also supply a function which satisfies these axioms, namely the function of three arguments which

always returns rational zero. A CONSTRAIN event is fi0t accepted unless the axioms, appropriately instantiated

with the witness functions, can be proved. This assures the consistency of the axioms by exhibiting a model.

Most of the constant parameters of our specification are introduced in a single large CONSTRAIN event

PARAMETERS-INTRO given in Figure 2. It might have been better to introduce these via several different

CONSTRATN events. In that case, it could have been more difficult to find appropriate witness functions, however.

A very strong advantage of introducing the various parameters in this way is that their names and properties become

"globally" visible. This allows us to give our theorems in a succinct form very close to those of the EHDM

representation. Figure 3, for example, shows the same lemma in both its EHDM form a and in the Boyer-Moore
logic.

_.lis is not aminimalset. The first axiom follows from the fourthone.

4Formsin [15l wereprettyprintedusing a special facility describedin that report;raw input to EHDM is much lesselegant. The version here
isintheprettifiedformat.

6

(CONSTRAIN PARAMETERS-INTRO (REWRITE)

;; Rm_l S

(AND (RATIONALP (R))

(RATIONALP (S))

(RLESSP (RATIONAL 0 i) (R))

(RLESSP (RATIONAL 0 i) (S))

(RLEQ (RTIMES [RATIONAL 3 I) (S)) (R))

;; rho
(RATIONALP {RHO))

(RLEQ (RATIONAL 0 I)

(RTIMES (RATIONAL 1 2) (RHO)))

(RLESSP (RTIMES (RATIONAL 1 2) {RHO))

(RATIONAL i I))

;; mher parame_n
(RATIONALP (EPSILON))

(RATIONALP (DELTA))

(RATIONALP (DELTA0))

(RATIONALP (BIG-SIGMA))

(RATIONALP (BIG-DELTA))

(NUMBERP (N))

(NOT (EQUAL iN) 0))

(NUMBERP (M))

(LESSP (MI (N))

(RLESSP (RATIONAL 0 I) (BIG-DELTA))

(RLEQ (BIG-SIGMA) (S))

(RLEQ (BIG-DELTA) (BIG-SIGMA))

(RLEQ (RPLUS (DELTA)

(RPLUS (EPSILON)

(RTIMES (RATIONAL i 2)

(RTIq_f£S (RHO) iS)))))

(BIG-DELTA))

(RLEQ (RPLUS (DELTA0) (RTIMES (RHO) (R)))

(DELTA))

(RLEQ

(RFLUS
(RTIMES (RATIONAL 2 1)

(RPLUS (EPSILON) (RTIMES (RHO) (S))))
(RPLUS (RQUOTIENT-NAT

(RTIMES-NAT (TIMES 2 (M)) (BIG-DELTA))

(DIFFERENCE (NI (M)))

(RPLUS

(RQUOTIENT-NAT

(RTIMES-NAT (N) (RTIMES (RHO) (R)))

(DIFFERENCE (N) (M)))

(RPLUS (RTIMES (RHO) (BIG-DELTA))

(RQUOTIENT-NAT

(RTIMES-NAT (N) (RTIMES (RHO)

(BIG-SIGMA)))

(DIFFERENCE (N) (M)))))))

(DELTAI))

((R (LAMBDA () (RATIONAL 3 I)))

(S (LAMBDA () (RATIONAL 1 i)))

(RHO (LAMBDA () (RATIONAL 0 i)))

(EPSILON (LAMBDA () (RATIONAL 0 I) 1)

(DELTA (LAMBDA () (RATIONAL 0 i)))

(DELTA0 (LAMBDA () (RATIONAL 0 I)))

(BIG-SIGMA (LAMBDA () (RATIONAL 1 2)))

(BIG-DELTA (LAMBDA (1 (RATIONAL 1 2)))

(N (LAMBDA (1 I))

(M (LAMBDA () 0))1)

;;poiR
;;p_S
;;cI

;; rho_.pm

;; rho..smAil

;; CO.,

;;COb

;; COc

;; C2

;; C3
;;C4

;; C5

;; C6

Figure2: CONSTRAIN IntroducingICCSA Parameters

7

The EHDM Version:

len_aldef : Lemma

SlC (p, q. i) ^ S2 (p, i) ^ nonfaulty (p,i + I) ^ nonfaulty(q,i + i) D IA(l) l < A
qp'

The Boyer-Moore Version:

(PROVE-LEMMA LEMMAI (REWRITE)
(IMPLIES (AND (SIC P Q I)

($2 P I)

(NONFAULTY P (ADD1 I))

(NONFAULTY Q (ADD1 I)))
(RLESSP (RABS (DELTA2 Q P I)) (BIG-DELTA))))

Figure 3: EHDM and Boyer-Moore Versions of the Same Lemma

3_ DEFN-SK

Another relatively new feature of the logic Which proved useful was the DEFN-SK facility [11] which allows the

introduction of quantified expressions into the specification. Several important constructs in the Rushby and von

Henke version were def'med via quantification. Earlier versions of the Boyer-Moore logic could not express many

of these conveniently. In particular, to prove an existential existential statement required exhibiting a wimess
constructively.

A DEFN-SK event allows the definition of an explicitly quantified term and the use of this term in other definitions

and theorems. For example, the notion of a good clock (within the interval [T0..TN]) is defined by Rushby and yon
Henke as: 5

goodclock: function[proc, clocktime, clocktime _ bool] =

(XP,ro.TN:
(v L,r2 :

To < TI ^ To Ie Tz ^ Tl le TN ^ T21e TN

=
<_p/2 * iD-r20)

Our definition is given by the DEFN-SK event:

SNotice that this definitionis from the revisedspecification.The first published version had"<" where the eunem versionhas "_". Thishas
the rather curiousconsequencethat there are no good clocks in a system in which the parameter p which gives the maxJmmn dock drift rate is
zero. Intuitively, this means that if alldocks areperfectno docks aregood.

(DEFN-SK+ GOOD-CLOCK (P LOW HIGH)

(FORALL (TI T2)

(IMPLIES (AND (IN-INTERVAL T1 LOW HIGH)

(IN-INTERVAL T2 LOW HIGH))

(RLEQ (RABS (RPLUS (CLOCK P TI)

(RPLUS (RNEG

(RPLUS

(RTIMES (RATIONAL 1 2)

(RTIMES (KHO)

(RABS

(CLOCK P T2))

(RNEG TI) T2))))

(RPLUS T1 (RNEG T2)))))))))

A DEFN-SK event causestwo axioms to be added to the database; these two axioms correspondingto the
skolemization of the event in each"direction" and together allow us to use an instanceof a quantifiedexpression
appearing in a hypothesisto a theorem and to prove an instanceappearingas the conclusion. The macro version
DEFN-SK+ of the event also causes these axioms to be encapsulated and proved as rewrite rules. For

GOOD-CLOCK these two theorems are shown in figure 4. See [11] for details on how these are generated and a

proof of the soundness of the approach.

(PROVE-LEMMA GOOD-CLOCK-SUFF (REWRITE)

(IMPLIES

(IMPLIES

(AND (IN-INTERVAL (TI HIGH LOW P) LOW HIGH)

(IN-INTERVAL (T2 HIGH LOW P) _
LOW HIGH))

-- (RLEQ (RABS (RPLUS (CLOCK P (TI HIGH LOW P))

(RPLUS (RNEG (CLOCK P (T2 HIGH LOW P)))

(RPLUS (RNEG (TI HIGH LOW P))

(T2 HIGH LOW P)))_)

(RTIMES (RATIONAL 1 2)

(RTIMES (RHO)- _- - -

(RABS (RPLUS (TI HIGH LOW P) ___.._

................... _6NE_ (T2 _HIGH LOW P))))))))

(GOOD-CLOCK P LOW HIGH)))

(PROVE-LEMMA GOOD-CLOCK-NECC (REWRITE)

(IMPLIE S

(NOT (IMPLIES

(AND (IN-INTERVAL T1 LOW HIGH)

(IN-INTERVAL T2 LOW HIGH))

(RLEQ (RABS (RPLUS (CLOCK P TI)

(RPLUS (RNEG (CLOCK P T2))

(RPLUS (RNEG TI) T2))))

(RTIMES (RATIONAL 1 2)

(RTIMES (RHO)

(RABS (RPLUS T1 (RNEG T2))))))))

(NOT (GOOD-CLOCK P LOW HIGH))))

Figure 4: Theorems Generated for a DEFN-SK+ Event

Use of DEFN-SK allows us to define concepts involving quantifiers in a fashion which is very analogous to th_eh"i__:
EHDM counterparts. However, we did not always find this convenient, rot example, Rushby and von Henke

9

define SDEF aS follows:

Sdef: Axiom Te S(0= (3 l'[: 0 -< r'[^ l'l _ R ^ T-- T(t) + l-I)

A close analogue in the Boyer-Moore logic using DEFN-SK would be:

(DEFN-SK+ SDEF (TM I)

(EXISTS PI

(AND (RLEQ (RATIONAL 0 i) PI)

(RLEQ PI (S))

(EQUAL (REDUCE TM)

(RPLUS (TI I) (RPLUS (RDIFFERENCE (R) (S)) PI)))))

However, we found the following definition to be more conv_ient and to eliminate an unnecessary existential

quantifier.

(DEFN IN-S (TM I)

(IN-INTERVAL TM

(RDIFFERENCE (T_[(ADD1 I)) (S))

(TI (ADD1 I))))

This illustratesthatoften the use of one styleof definitionis more "natural" in a given logic even when others

stylesareavailable.Itisnotsurprisingthenthatsomeofourdefinitionswerequitedifferentthanthecorresponding

EHDM versions.However,we believethemtobeequivalentinallrelevantaspects.As anexercise,we provedthe

lemma whichshowstheequivalenceofthedefinitionsSDEF and IN-S.

(PROVE-LEMMA SDEF-IN-S-EQUIVAIENCE ()

(IFF (SDEF TM I) (IN-S TM I)))

UsingCONSTRAINS andDEFN-SKS, we wereabletowritetheoremswhicharetextuallyveryclosetotheEHDM

versions in most caSes. It is evident from the two versions of LEI,O_I listed in Figure 3 that, except for minor

textual differences, there is very little difference in the presentation of theorems in the two logics. This was the rule

rather than the exception for the lemmas required in our proof."

3.4 Avoiding Higher Order Functions

The ability within EHDM todefine higher order functions is a definite benefit from the perspective of writing clear

and elegant specifications. However, many of the uses of higher order functions can be avoided by careful use of

facilities available within the Boyer-Moore logic. This waS true of each of the uses of the EHDM higher order
facilities in the ICCSA specification.

As an example, consider the MEAN function defined by Rushby and yon Henke as follows:

*2 *3: function[nat, nat, function [nat _ number] _ number] =

()d, j, F: if i ___jthen _ F/Q + I - i) else 0 end if).

Notice that one parameter to this def'mition is a function F. From this definition, Rushby and von Henke prove a
number of quite general lemmaS.

There is not a similar facility within the Boyer-Moore logic though many of the advantages of such higher order

definitions are available via other routes. For example, our version of the MEANis defined aS follows:

10

(DEFN RSUM (LST)

(IF (NLISTP LST)

(RATIONAL 0 I)

(RPLUS (CAR LST) (RSUM (CDR LST)))))

(DEFN RMEAN (LST)

(RQUOTIENT-NAT (RSUM LST) (LENGTH LST)))

Rather than parameterizing RMEAN with a function, we parameterize it with a list of elements returned by the

function. This is conceptually equivalent and we can prove all of the nice properties of the EHDM version. Most of

the interesting properties ate really properties of RSr._ rather than of Rk,IEAN.

This style of trivial transformation is not the only way to deal with higher order functions and properties in the logic.

An interpreter is available for the logic which permits reasoning about functions at the recta-level. Also, it is

possibie to "fake" higher-order properties in other ways. We have checked the proof, for example, that there is no

algorithm whichsolves a certain version of the Byzantine General's problem. [3] This is inherendy a second order

property.

4. Aspects of the Proof

4.1 Restraining the Prover

Our proof of ICCSA was somewhat atypical in several ways of most proofs using the Boyer-Moote prover in

several ways. Rushby and von Henke had done much of the difficult work of finding a sequence of lemmas leading

up to the proofs of the desired correctness theorems. Moreover, because of the way the EHDM prover operates, the

collection of lemmas necessary for a given proof are displayed along with their specific instantiatious. Given this

information, constructing a formal proof is largely a matter of intelligent simplification and tautology checking. 6

A proof in the Boyer-Mciore theorem prover typically relies more on the prover's heuristics to choose among

previously proven lemmas and instantiate them correctly. However, the prover can be used in a mote restrained

fashion by dis,_tbling most functions and rewrite rules and using the prover as a simple proof checker. This is done
by enabling only those lemmas known to be relevant and adding USE hints to specify particular instantiations of the

variables in needed lemmas. This was the approach we followed in our proof of the ICCSA; most functions _d

lemmas were globally disabled. We also made use of an experimental feature for encapsulating the names of a
group of events_in_ a "fia_whi_ can be enatIed: or _saS_d cOllectively. Figure 5 shows a particuiar iemma

in our script which is an example of the use of USE: hints, selective enabling, and theory enabling to obtain the proof,

4.2 Order of Steps in the Proof

The Boyer-Moore prover allows very little flexibility in the order of steps in a proof. Each function must be fully

defined or constrained before it is used; each lemma must be proven before it can be used in proofs. For definitions

this means that there is no genuine mutual recursion 7 For proofs it means that the proof is presented (though not

necessarily discovered) in a very_'_om-up '' style. This approach gu_t_es that there are no Citc_des_m the

proof.

E,HDM does not impose such a limited ordering on the steps in the proof. To assure that there are no circularities in

_'he EHDM proof of ICCSA _ed only the gIIDMgroundprover. [151

"/There is a standard way to Ilain the effectl of mutual recursion by defining several "functions" within one and using a fla$ to distinguish

smonll them. [7] Also, them is an available read macro for the prover which turns a list el" mutually mcursive definitions into an ¢v_mt air this

_ [1oi

ll

(LEMMA SUBLEMMA-A (REWRITE)
(IMPLIES (AND (NONFAULTY P I)

(NONFAULTY Q I)
(IN-R TM I))

(RLEQ (SKEW P Q TM I)

(RPLUS (SKEW P Q (TI

((USE (REARRANGE-ALT

(RTIMES (RHO)

(X (C P I TM))

(Y (C Q I TM))

(U (C e Z (TZ I)))

(V (RPLUS TM (RNEG

(w (C Q I (TI I))))

I) I)
(R)))))

(TI I))))

(LEMMA2D (PI (RPLUS TM (RNEG (TI I)))))
(LEMMA2D (P Q) (PI (RPLUS TM (RNEG (TI I))))))

(ENABLE-THEORY REDUCTIONS)
(ENABLE SKEW RDIFFERENCE RNEG-RPLUS C-REDUCE TI-NEXT RABS-POSITIVE2

RPLUS-RLEQ-REWRITE RPLUS-RLEQ-REWRITE2 RLEQ-RTIMES-HACK
IN-R IN-INTERVAL RHO-RLEQ0 RLEQ-TRANSITIVE RLEQ-RPLUS-HACK3

RLEQ-HALF-RPLUS RLEQ-RTIMES-HACK RPLUS-RLEQ-REWRITE)))

Figure 5: Proof of SUBLEMMA-A Showing USE Hints

the resulting proof, a tool called the EHDM Proof Chain Analyzer is run over the ['mal proof and checks for

circularities.In the proof of ICCSA thereisa circularityin the proof of the main theorem THEOREM1. This is

explainedas follows:

This circularity is apparent, rather than real, as it occurs in the context of an inductive proof, M which the
theorem is used for i in the part of the proof that extends it to i + 1. We are working towards

constructing a proof description that reflects this induction step more straightforwardly. [15]

Unfortunately, determining whether such a circularity is apparent or real requires a fairly deep understanding of the

proof. The Boyer-Moore approach does not allow even an apparent circularity but the cost is a much more

regimented approach to proof presentation.

As an interesting aside, just as Rushby and yon Henke had to deal with the structure of the inductive proof of

TFIEOREMX in EHDM, we had to confront the same issue in the Boyer-Moore system. We could approach it either

by defining an appropriam induction schema to make available the required inductive hypotheses (the typical

approach in the Boyer-Moore system) or by using another approach altogether. Defining an appropriate induction

schema would have been difficult because the inductive hypothesis was really required in the proof of a large

subsidiary lemma CULMINATION. We would have needed to prove THEOREM1 and CULMINATION

simultaneously by packaging them into one lemma. This trick is used often in the Boyer-Moore prover. Our

soludon was again somewhat atypical and illustrates a clever(we think) use of DEFN-SK.

THEOREM1 has form:

(PROVE-LEMMA THEOREM1

(IMPLIES (SIA I)

(R_WRITE)

(SlC P Q I)))

We introducedtheDEFN-SK eventbelow todefinethestructureof thetheorem:

12

(DEFN-SK THEOREMI-ONE-STEP (I)
(FORALL (P Q)

(IMPLIES (SIA I)
(SiC P Q I))))

Noticetha_ this is pammetedzed by i. Asserting(THEOREMI-ONE-STEP I) is ex]uivaient to E_erting that

THEOREM1 holds through period i. Wherever the EHDM approach used THEOREM1 in the proof, we simply

assexted THEOREM1-ONE-STEP as an additional hypothesis on the !emma, as in CULMINATION below:

(PROVE-LEM_ACULMXNATION (REWRITE)
(IMPLrES

(AND (SIA (ADD1 I))
(SIC P q I)
(NONFAULTY P (ADD1 I))
(NONFAULTY Q (AD01 I))

(IN-R TM (ADD1 I))
(THEOREMI-ONE-STEP I))

(RLEO (SKEW P 0 TM (ADD1 I))
(RPLUS
(RQUOTIENT-NAT
(RPLUS

(RTIMES-NAT (M)
(RPLUS (DELTA)

(RTIME$ (RATIONAL 2 1) (BIG-DELTA))))
(RTIMES-NAT (DIFFERENCE (N) (M))

(RTIMES (RATIONAL 2 I)
(RPLUS (EPS ILON)

(RPLUS (RTIMES (RHO) (S))
(RTIMES (RATIONAL I 2)

(RTIMES (RHO) (BIG-DELTA))))))))
(N))

(RPLUS (RTIMES (RHO) (R))

(RTIMES (RHO) (BIG-SIGMA))))))).

This made_B?_p_o_ of CULMINATI ON exacdythe instance of THEOREM1 required in _ Ira'(X)L We

then used CULMINATION in the proof (by inducdonon i)of the lemma:_

- _,Lme,_ T_EO_M_-V_SION_ __(__ -._-_i_-L--I....._ .-.-___ __; i_-___......--

_ =..... h_es_ being reh%v&lByCULMINATION iSused m_6 ph_x_t_of_the;ndu(fd6t4_;_p,]ts THEOREM1 -ON-STEP

[ddi6a_tes again the utility ofDEFN-SK in adding clarity and proofpower. - -- - - _ ': :- -- ----_ ---

4.3 Proof Encapsulation

The Boyer-Moore logic has no convenient way of structuring a specification and proof into a collection of

"modules." This is largely dictated by the requirement that the specification and proof be presented in a yea3,

"bottom up" fashion. A collection of related units may be grouped together in the script, but dten_ is no formal

mechanism within the logic of encapsulating them into a module or structure of any sort. This is not often a

problem but makes a large script somewhat harder to browse effectively.

In conwast, EHDM has a simple but useful structuring mechanism. Related units are grouped into modules.

Modules implement a style of information hiding by making vis_le only certain declarations within an

EXPORTING section.Modules gainaccesstooneanotherby includingaUS ING secdOh.

13

4.4 _Synt_x

The Boyer-Moore logic is sometimes criticized for its Lisp-like syntax. This syntax has the advantage of being

uniquely-readable (unambiguous) and very easily parsed. It has the disadvantage of being different from traditional

mathematical syntax. Several papers have described proofs in the Boyer-Moore logic using a more traditional

syntax; however, these may mislead a prospective user of the theorem prover. We feel that the small effort of

learning a new syntax is well rewarded by gaining access to a powerful proof tool.

EHDM has reaped the benefits of both a readily parsable syntax and a more familiar "display" syntax by

implementing a table driven translator from standard EHDM syntax into a LATEX formal This gives a nice

customizable syntax for presentation which Rushby and yon Henke claim "enabled us to do most of our work using

compact and familiar notation and thereby contributed greatly to our productivity" [15]. We believe that this

overstates the value of this "compact and familiar notation."

Our experience with attempting a similar translator for the Boyer-Moore logic is that it is counterproductive to try to

integrate such a translator with a theorem prover which uses a different syntax for its internal representation, proof

diagnostics, and output script. If the translation could be entirely transparent to the user, there would be no

difficulty. However, users of mechanical proof tools often need to be aware of the details of the internal

representation of rewrite rules, the particular transformations on terms that they effect, and other things which are

most efficiently expressed in a syntax which is close to that used by the machine. When this is no longer true, then

syntax will not be an issue. Until then, we feel that the need to continually deal with two different forms is

confusing and unnecessary.

Another problem of the EI-IDM translator is that the notation is not flways compact and familiar. For example, we

found the expression

p*Axn-m/n,

(which appears in a number of lemmas) to be impossibly confusing until we realized that the term n-m is treated as

though it were grouped. Here the apparent familiarity of the syntax is detrimental because the expected precedence

rules are not observed with the result that the expression is unnecessarily confusing. This is probably a simple flaw

in the translator table. But it points up the difficulty of having the correctness of a published proof rely not only on

the prover and proof chain analyzer, but also on another tool which translates from one notation to another in a

moderately complex fashion.

5. Conclusions

There are a number of other differences between the Boyer-Moore and EI-IDM versions of the ICCSA proofs which

will be covered in the (soon to be written) detailed comparison of the two versions.

We believe that the exercise of specifying and proving the ICCSA using the Boyer-Moore prover was useful in

several ways.

* It exercised and further displayed the value of a number of the newer features of the Boyer-Moore
logic and their support in the theorem prover. These features include the CO_S'gPd_rN and Dr.Ft_-SK
events.

• It provided the basis for a comparison with the EHDM system and a style of proof possible within that
system. This aspect will lead to a joint paper comparing the two systems on this problem.

• It provided a verified specification of the Interactive Convergence Clock Synchronization algorithm as
a basis for possible future work building toward a verified implementation.

We believe that two important goals of proof are to increase one's understanding and intuition about the content and

14

significance of a theorem, and to provide a convincing argument that it is, in fact, valid. Mechanically supported

proofs like chose in EHDM and ours contribute w both of these goals. We understand this quite subtle algorithm
and the reason it works much better for the effort. Moreover, our success in convincing a congenitally skeptkal

mechanical proof checker of the validity of the correctness theorems practically guaran_,es that we have ¢Hminatod

any errors which the much touted "social process" might overlook. Such confidence is particularly comforling in

domains such as this where a well-developed intuition is difficult to cultivate; the theorem prover is not subject m

being misled by the urgings of a misguided or ill-informed intuition,

15

R-e-rerences

I.BillBevier.A LibraryforHardwareVerification.InternalNote57,ComputationalLogic,Inc.,June,1988.
Draft. , _ r _

. , - . . ,

2. WilliamR.Bev_¢r."Kitand_e .ShortS_ack".Journalo/AutomatedReasoning5,4 (December 1989),519-530.

3. WilliamR.Beviet,WilliamD. Young. The Designand ProofofCorrectnessofaFault-TolerantCircuit.

TechnicalReport57,ComputationalLogic,Inc.,May, 1990.Draft.

4. R. S.BoyerandJS.Moore. A ComputationalLogic.Academic Press,New York,1979.

5. R. S.BoyerandJS.Moore. Metal'unctions:ProvingThem Correctand UsingThem EfficiendyasNew Proof
Procedures.InThe CorrectnessProbleminComputerScience,R. S.Boyerand JS.Moore,Eds.,Academic Press,

London,1981.

6. R.S.Boyer,D. Goldschlag,M. Kaufmann,IS.Moore. FunctionalInstantiat/oninFirstOrderLogic.Tech.

Rept.44,ComputationalLogic,Inc.,May, 1989.Publishedinproceedingsofthe1989Workshop on Programming

Logic,ProgrammingMethodologyGroup,UniversityofGoteborg,WestGermany.

7. R. S.Boyerand JS.Moore. A ComputationalLogicHandbook. AcademicPress,Boston,1988.

8. BishopBrock,An ExperimentalImplementationofEquivalenceReasoningintheBoyer-MooreTheorem
Prover.InternalNote I04,ComputationalLogic,Inc.,1988.Draft.

9. WarrenA. Hunt,Jr."MicroprocessorDesignVerification".JournalofAutomatedReasoning5,4 (December

1989),429-460.

10. MattKaufmann. A MutualRecursionand DependencyAnalysisToolforNQTHM. InternalNote 99,

ComputationalLogic,Inc.,1988.Draft.

II. MattKaufmann. DEFN-SK: An ExtensionoftheBoyer-MooreTheorem ProvertoHandleFirst-Order

Quantifiers.Tech.Rept.43,ComputationalLogic,Inc.,May, 1989.

12. Matthew Kaufmann. An IntegerLibraryforNQTHM. InternalNote 182,ComputationalLogic,Inc.,March,
1990.

13. LeslieLamportandP.M. Melliar-Smith."Synchronizingclocksinthepresenceoffaults".JournaloftheACM
32,I(January1985),52-78.

14.NASA ConferencePublication2377. PeerReview ofa FormalVerification/DesignProofMethodology.

NASA, July,1983.

15. JohnRushby and Friexl.,'ichyon Henke. FormalVerificationoftheInteractiveConvergenceClock

SynchronizationAlgorithmusingEHDM. Tcch.Rept.SRI-CSL-89-3,Computer ScienceLaboratory,SRI

International,February,1989.

16. JohnRushby. Updateon ICA Verification.ComputerScienceLaboratory,SRI International,January,1991.

17. WilliamD. Young. "A MechanicallyVerifiedCode Generator".Journalo/AutomatedReasoning5,4

(December1989),493-518.AlsopublishedasCLI TechnicalReport30.

3

,i!

16

Appendix
The ICCSA Event List

This appendix contains the Boyer-Moore event list representing the specification and proof of the Interactive

ConvergenceClockSynchronizationAlgorithm.Itdoes.orcon_n theemim proofsinceitisbulk"oa topor' a

standardlibraryofintegerfacts.For brevitywe havealsonot includedthecollectiono_ definitionsand lemmas

definingtherationalslibraryon whichourproofisconstructed.The completescriptisavailableon ¢eque_

LEMMAevents are macro expanded intoa PROV_-LEMMA followed by a DISABLE.

;; LENGTH

(defn length (x)
(if {nllstp x)

0

(addl (length (cdr x)))))

(prove-lemma lenq_.h-append (rewc!te)
(equal (len_[Ch (append x y))

(plus (lenc]th x) [length y))))

(lemma length-O (rewrite)

(equal (equal (length x) O)
(nlistp x)))

:: PLISTP

(defn plistp (x)
(if (nlistp x)

(equal x rill)
(pliscp (cdc x)))}

(defn pllst (x)
(if (nllstp x)

nll
(cons (car x) (pllst (cdr x)))))

;;FIRSTN _ RESTN

(defn firstn (lst n)

(if (zerop n)
nil

(cons (car Ist)
(flrstn (cdr ist) (subl n)})})

(lemma firstn-n (rewrite)
(implies (equal n (length lsc)}

{equal (flrstn lsC n)
(plist lst))))

(lemma flrstn-append-lessp (rewrite]
(implies (leq m (lenqth lst))

(equal (flrstn (append Ist Isc2) m)
(flrstn IsC m|)))

(defn tesr.n (lst n)

(If (zerop n)
1st

(resin (cdr ist) (subl n)))}

(lemma rescn-n (rewrite)
(implies (and (pliscp lst)

(equal n (length IsC)))
(equal (restn ist n) nil))

((enable resin)))

17

(lemma restn-i (rewrite)

(implies (lessp m i)

(equal {resin (list x) m)

(list x)))

((enable resin)))

(lemma restn-append (rewrite)

(implies (leg n (length Istl))

(equal (restn (append Istl lst2) n)

(append (restn iscl n) 1st2)))

((enable resin)))

(lemma firstn-append-res_n (rewrite)

(implies {leq m (length ist))

(equal (append (firstn ist m)

(restn tst m))

Ist}})

;;RATIONALSWITHNATURALS

(defn rinverse-nat (n)

(reduce (rational I (fix n))))

(len_a reduce-r_nverse-nat (rewrite)

(equal (reduce (rinverse-naC n))
(rlnverse-nat n))

((enable reduce-reduce)))

(defn rtimes-nac {i r)

(rtimes (rational (fix i) I) r))

(darn rtimes-na:2 (r i)

(r_imes r (rational (fix i) I)))

(lemma reduce-r%imes-nac (rewrite)

(and (equal (reduce (rtimes-nat x y))

(rtimes-nat x y))

(equal (reduce (rtimes-nat2 X y))

(crimes-nat2 x y)))

((enable rtimes-nat rtimes-nat2)

(enable-theory reductions)))

(lemma rtimes-nat-rtimes-nat2 (rewrite)

(equal (rtimes-nac2 x y)

(rtimes-nat y x))

((enable rtimes-nat rcimes-nat2 commutativity-of-r_imes)))

(lemma rneg-rtlmes-nat (rewrite)

(equal (meg (rtimes-naC i r))

(rtimes-nac i (meg r)))

((enable rtimes-nat meg-frAmes)

(disable correctness-of-cancel-rneg-terms-frcm-equality)))

(defn rquotlenC-nat (r i)

(rcimes r (rinverse-nat i)))

(lemma rtimes-nat-addl (rewrite)

(equal (rtimes-nat (addl i) r)

(rplus r (rcimes-nat i r)))

((enable rtimes-nat rtimes-addl)))

(disable rinverse-nat)

(disable rtlmes-nat)

(disable rtimes-nat2)

(disable rquotient-nat)

(lemma rneg-rquotienC-nat (rewrite)

(equal (meg (rquotient-nat r n))

(rquotient-nac (meg r) n))

((enable rc[uotient-nat meg-crimes

rneg-rtimes2)))

18

(lemma ctimes-nat-zerop (rewrLte)

[implies (zerop i)

(equal (rtlmes-nat i r)

(rational 0 1)))

[(enable rtimes-nat rzerop-_times)))

(lemma rinverse-nat-positive (rewrite)

(rleq (cationa[0 1)

(rtnverse-nat n))

((enable rinverse-nac numbetp-£nverse-nonnegatLve

rleq-reduce)))

(lemma rabs-rinverse-nat (rewrite)

[equal (rabs (rinverse-nat n))

[rinverse-nat n))

((enable tabs-positive2 rinverse-nat-positive
reduce-rinverse-nat)))

(lemma rquotient-na_-rtlmes-nat (rewrite)

(implies (not (zerop n))

(equal [rquotient-nat (ctlmes-nat n x) n)

(reduce x)))

((enable r_imes-lnverse rtlmes-nat rquotlent-nat

rinverse-nat nzerop-denominator-reduce)))

(lemma rtlmes-nac-rquo_lent-nat (rewrite)

(implies (not (zerop n))

(equal (rtimes°nat n (rquotient-nat x n))
(reduce x)))

((enable rtimes-inverse rtimes-nat rquotient-nat rinverse-n_:

nzerop-denomina_or-reduce commutativity-of-=_imes

commu_atlviuy2-of-rtimes rationalize-invert rtimes-l)))

(lemma rquotienc-nat-rplus (rewrite)

(equal (rquotient-nat (rplus x y) n)

(rplus (rquotient-nat x n)

(rquotient-nat y n)))

[[enable rquotient-nat rtlmes-rplus-riqht-dlstrlbutlv!ty)))

(lemma div-mon2 (rewrite)

[implies (and (rleq x y)

(not (zecop z)))

(rleq (rquotient-nat x z)

(rquotient'nat y z)))

((enable rquotlent-nat rtlmes-r/ght-canc¢llatlon rinve_/e-na:

nzerop-denominator-reduce reciprocal-positive)))

[lemma ratlona!ize-rleq2 (rewrite)

(implies (not (zerop n))
{rlessp (rational 0 I) (rational n i)))

([enable rleq clessp flx-ratlonal ilessp ratlonalp

integerp)))

(lemma rtimes-nat2-posttive-pteserves-rleq (rewrite)

(impLies (and (not (zerop n))

(rleq (rtlmes-nat2"x n)

(rtimes-nat2 y n)))

(clew x y))

((enable rtlmes-right-cancellacion rtimes-nat2 ratlonalize-:leq2)))

:: RSU?vg md R/_r.A,N

(defn rsum (ist)

(if (nlistp ist)

(rational 0 i)

(rplus {ca: lst)

(rsum (cdr lst)))))

(disable rsum)

(lemma reduce-rsum (rewrite)

(equal [reduce (rsum ist))

{rsum ist))

([enable reduce-rplus rsum)))

19

(lemma :plus-:sum {rewrite)

(equal {:plus (csum iscl) {:sum ist2))

(rsum {append istl Ist2)))

((enable :sum rplus-rzerop reduce-:sum

assoclatlvlty-of-rplus)))

(lemma rsum-append (rewrite)

{equal (:sum (append lstl ist2))

{:plus (:sum Istl) (:sum Ist2)))

((enable assoclativicy-of-rplus :sum rplus-rzerop

reduce-:sum)))

{defn rmead (is=)

{:quotient-nat (:sum ist) (length ist)))

(defn all-rlesso {ist x)

{if (nlis_p ist)

t

{and (r!essp {car Ist) ×)

(a!l-rlessp (cdr Ist) x))))

(lemma all-rlessp-append {rewrite)

(equal (all-rlessp (append x y) z)

(and {all-rlessp x z)

(all-rlessp y z)))

((enable all-rlessp)))

(lemma all-rlessp-rleq-transltlve (rewrite)

(implies (and (ai[-rlessp Ist x)

(rleq x y))

(all-rlessp ist y))

((enable :lessp-rleq-transi_ivlty)))

(lemma sum-bound (few:ice}

(implies (and (listp Ist)

{all-rlessp Ist x))

(rlessp (rsum Ist)

(:times-nat .(length Ist) x)))

((enable all-rlessp :sum rtlmes-nat-zerop

rtimes-nat-addl rlessp-rleq rplus-rzerop

rlessp-reduce rlessp-rplus-pair)))

(lemma nzerop-inverse-posltlve (rewrite)

(implies (not {zerop n))

(RLESSP (RATIONAL 0 I)

(RATIONAL 1 n)))

((enable rlessp rationalp fix-ratlonal ilessp)))

(lemma mean-bound (rewrite)

;; _ al of d_ eicmcnu m Lhe _st are less _an x,

;; _m _e mean o[d_ Jist {s less _an x

(implies (and (ltstp lst}

(all-rlessp 1st x))

(rlessp (rmean Ist) x))

((use (sum-bound))

(enable rlessp-invert-ctimes rinverse-numberp-lnverse

nzerop-lnverse-positive length-0 :times-nat

nzerop-denomlnator-reducei_rquotlent-nat :inverse-nat)))

;;MAP-RABS

(defn map-cabs (Ist)

(if (nlistp ist)

nil

(cons (cabs {car ist))

(map-cabs {cdr lst)))))

(lemma length-map-tabs (rewrite)

{equal (length {map-cabs Ist))

(length Ist))) _

(lemma map-cabs-append (rewrite)

(equal (map-cabs (append x y))

(append (map-rabs X) (map-cabs y))))

20

(lemma pl_stp-map-rabs (rewcite)

(plistp (map-cabs ist))

((enable map-cabs plistp))}

(lemma plist-map-rabs (rewrite)

(equal (plisc (map-cabs x))

(map-cabs x))

((enable map-cabs plist)))

(lemma cabs-=sum-map-cabs (rewrite)

(cleq (cabs (=sum lst))
(csum (map-cabs lsc)))

((enable =sum rabs-cplus-hack)))

(lemma abs-mean (rewcL_e)

;;_ea_ of_c mean itlcq_e mean of_cabsolu_ valu_

(rleq (cabs (cmean lsc))

(rmean (map-cabs is_)))

((enable cabs-=times :_imes-rleq2 cabs-=sum-map-cabs

cinvecse-nat-positive cquotien£'na£ rze@6p-rtlmes

rabs-rinverse-nat length-map-cabs)))

(lemma listp'map-rabs (rewrite) ' '

(equal (llscp (map-cabs x))

(listp x)))

;;P..EARR_NGE LE_'%%-MAS

(lemma rearrangel (rewrite)

(equal (cd!ffecence x y)

(=plus (cdifference x (cplus u v))

(=plus (cdi_ference (=plus w z) y)

(rdiffe_ence (cplus u v) (=plus w z)))))

((enable rdifference cneg-_plus associativlty-of-_p!us reduce-meg) l)

(lemma rabs-negatlon-equali_y-hack (rewrite)

(equal (cabs (cplus y (colus (cneg w) (:neg z)))}

(cabs (rplus w (rplus z (meg y)))))

((use (cabs-meg (x (cplus y (rplus (rneq w) (cneg z))))))

(enable commutativity-of-cplus commutat!vity2-of-rpius

:plus-reduce rneq-rneg rneg-mplus)))

(lemma rearrange2-transitivity (cewrlte)

(implies

(rleq (rabs (rplus x (meg y)))

(=plus (cabs (cplus x (rplus (rneg u) (meg v))))

(=plus (cabs (rplus u

(rplus V (=plus (cneg w) (:neq z)))}|

[cabs (rplus w (cplus z (meg y)))))))

(rleq (cabs (:plus x (meg y)))

(rplus (cabs (:plus x (rplus (cneg u) (rneg v))))

(cplus (:abs (rplus y (cplus (cneg w) (cneq Z))))

(cabs (=plus u

(=plus v

(rplus (rneq w) (meg z))))))))|

((use (rleq-transltive

(x (cabs (rplus x (meg y))))

(y (cplus (cabs (cplus x (cplus (rneq u) (meg v))})

(=plus (cabs (=plus u (rptus v (cplus (rneq w) (meg z)))))

(cabs (rplus w (cplus z (rneg y)))))))

(z (cplus (cabs (rplus x (rplus (meg u) (cneq v))))

(cplus (cabs (cplus y (rplUs (meg w) (rneq z))))

(cabs (cplus u (rplus v (=plus (meg w) (_neq z))}))))|))

(enable cabs-negation-equality-hack

rleq-ceflexive commutatlvi_y2-of-rplus

commutativity-of-rplus rleq-reduce cplus-cancel)))

(lemma rearrange2 (rewrite)

(cleq (rabs (cplus (rdifference x (cplus u v)) _ _' _ _

(rdifference (rpius u v) |cplus w z))|})

(rplus (cabs (rdiffe_ence x (rplus u v)))
(rplus (cabs (rdifference y (rpius w z)))

(cabs (cplus u (rdl_fere_ce v (rpius W Z)))))))

21

({use (rabs-rplus-cleq2 {x (_diEference x (rpius u v)))

(y (rdlffe_ence {rplus u v) (rplus w z)))

(z (rdifference (rpluslw z) y)))

(rabs-rneg (x (rdifference {rplus w z) y))))

(enable rplus-reduce rneg-_neg rdifference

reduce-meg associa_ivity-of-rplus

rneg-rplus rdifference rearrange2-transitivlty)))

(lemma rearrange {rewrite)

{rleq Crabs {rdlfference x y))

(rplus Crabs (rdifference x (rplus u v)))

(rplus (tabs (rdifference y (rplus w z)))

(cabs (rplus u (rdlfference v (_plus w z)))))))

{{use (rearrangel) (rearrange2)))}

(lemma rearrange-eli (rewrite)

(rleq (tabs (rplus x (cneg y)))

(rplus (tabs (rplus x (meg (rplus u v))))

(cplus (tabs (cplus u (meg w)))

irabs (rplus y (meg (rplus w v))))))}

((use {rearrange (Z v)))

(enable rplus-reduce meg-meg reduce-rneg

assocla_ivlty-of-rplus rneg-rplus rdifference commutativity-of-rplus)))

(lemma rearrange3 (rewrite)

(cleq {cabs {rdifference × y))

(rplus {cabs (rdifEecence u y))

(rplus (tabs (rdifference V x))

(rplus (tabs (cdifference v w))

(tabs (rdifference u w))))))

({u,e {rabs-rplus-rleq3 {rplu, u {r"eg yi)i
(y (rplus x {meg v)))

(z (cplus v {cneg w)))

(w (rplus w (meg u))))

(rieg-transitive

(x Crabs (rplus x(rneg y)))) - "

{y (tabs (rplus (rpius u (meg y))

(rplus (cplus x (meg v))

(rplus {_p_us v (meg w))

(cp!us w {meg u)))))))

{z (rplus (tabs (rplus u (meg y)))

[rplus (tabs (rplus v (meg x)))

{rplus (tabs (rplus v (cneg w)))

(tabs (rplus u (meg w)))))))))

(enable rplus-reduce meg-meg reduce-meg

rabs-rdlfference assoclativity-of-rplus rneg-rplus

rdiffecence commuta_Ivity-of-cplus rleg-reflexive))l

(!emma rearrange4 [rewrite)

(rleq {tabs (rdifference (rplus a x) (rplus b y)))

(rplus {tabs (rdiffecence a b))

{rplUS Crabs X) Crabs y))))
{{use' (rab_-rplus-rleq2 (x (rplus a {meg 5))) (y x) [z (cneg y))))

(enable rdlf_erence commutativity-of-rplus commutativity2-of-rplus

_ssoclativity-of-rplus tabs-meg rneg-rplus)))

;;RF.ARPJuN'GE-DELTAf_prnmod_eJUGGLE _ _

(lemma rea_range-deita-stepl nil

(implies (and (not (zerop i))

(rleq (rplus x (_plus y (rplus z (rplus w v)))) d))

(rleq (cplus (rtimes-na_2 x i)

(rplus (rtimes-nat2 y i)

(rplus (rtlmes-nat2 z i)

(rplus (rtimes-nat2 w i)

(ctlmes-nat2 v i)))))

(r_imes-nat2 d I)))

((enable rleq requal crimes-nat2 rtimes-cplus-rlght-factorlzation

clessp-an_isymme_rlc rlessp-trlcho_omy rationalized-non-zerop-rlessp)

(enable-theory reductions)))

i

22

(lemma _earrange-delta-step2 nil

(implies (and (lessp m n)

(rleq x (r_imes-nat2 d (difference n m))))
(rleq (rplus (frames-nat2 d m) x) (crimes-nat2 d n)))

((enable frAmes-nat2 rzecop-rtimes _plus-rzerop =leq-reduce

rttmes-dis_ribu_es-over-plus cplus-cancel rtlmes-rzerop)))

(lemma rearrange-delta-step3 nil

(implies (and (not (zerop i))
(:leq (rplus x (rplus y (cp_us z (rplus w (rplus v u))))),

(r_lmes-nac2 d i))) " --

(rleq (rplus (rquocient-nat x [)

(rplus (rquo_lent-na: y l)

(rplus (rquotient-nac z l)

(cplus (cquotient-nat w i)

(rplus (rquotient-nat v i)

(rquotlent-nat u i))))})

d))

((enable rt lines-nat2 rzerop- C_ lines .r2!us-:_ze_rop_r _eqT ced u£e

rquotient-nat rtimes-rplus-rlght-factoclzation rplus-¢ancel

rtlmes-rze_op r[nverse-nat nzerop-denominator-reduce

rtlmes-multlply-by-rlnverse .rlnverse-numberp-invecse

nzerop-lnverse-positlve)))

(lemma rearrange-delta-step4 (rewrlte)

(equal (rplus (rquotient-nat x n)

(rplus (rquotlent-nat y n}

(rplus (rquotlent-na: z n)

{rplus w (rplus (rquotient-nat u n) v)))))

(rplus (rquotlent-nat (rplus x (rplus y (_plus z u))) n)

(rplus w v)))

([enAble assoctativtty-of-_plus commutativi:y-of-rplus _educe-_imes

commutattvi_y2-of-_plus cquotlent-nat cinverse-nat

rtlmes-rplus-righ_-factorizat_on|)|

(lemma rearrange-delta-step5 (rewrite)

(equal (rplus (rtimes-nat m d)

(rplus (ct£mes-nat y (r_imes (rational 2 1) (rp_US • _)))
(rplus (rtimes-nat (plus m m) w) (rtlmes-na_ y x))))

(rplus (rtlmes-nat m (rplus d (climes (rational 2 I) w)))

(rtimes-nat y

(rtimes (rational 2 1)

(rplus • (rplus z (:times (=a_Lona_ _ 2) _)))))))

((enable-theory reductlons)

(enable frAmes-nat associa_lvt_y-of-rplus

rtlmes-dtstrtbutes-over-rplus commutativi_y-of-_mes

commutatlvity2-of-rtimes half3

commutativlty-of-rplus eommutativlty2-of-_plus

rtlmes-dlstrlbutes-over-plus rtlmes2-expand))}

(lemma rearrange-delta (rewrite)

(implies (and (lessp m n)

(numberp m)

(rleq (rplus (rtimes (rational 2 1) (:plus epstlon (r_lmee rh_ s)))

(rplus (rquotient-nat (r_imes-na¢ (times 2 m) big-delca)
(difference n m)]

(rplus (:quotlent-nat (_times-nat n (£_mes _ho ¢))
(difference nm))

(rplus (rtime# rho b_-del_a)

(rquo_en_n_ _

(rtlmes-n_t n (_lneJs rho b_g-S/gm))

(difference n a))))))

delta))

23

/

!"

(rleq (=plus (=quotient-nat

(=plus

(rtlmes-na_ m

(rp!us delta

(=times (rational 2 l) big-delta)))

(rtimes-na_

(difference n m)

(=time2 (rational 2 i)

(=plus epsilon

(=plus (=times rho s)

(rtlmes (ratiofal I 2)

(=times rho blg-delta)))))))

(d delta))

(rearrange-delta-s_ep3

(in)

(d delta)

(x (=times-nat2 delta m))

(y (=times-nat2 (=times (rational 2 i)

(=plus epsilon (rtlmes rho s)))

(difference n m)))

(z (rclmes-nat (times 2 m) big-delta))

(w (rtlmes-nac n (rtlmes rho r)))

(v (rtimes-na_2 (rtlmes rho big-delta)

(difference n m)))
=

(u (=times-nat n

{=times rho big-slgma))))}

(enable rtlmes-nat-rguotienc-nat r_imes-nat-rtlmes'nac2

reduce-rtlmes-nat

rquotien_-na_-rtlmes-nac rearrange-del_a-scep4 rearrange-delta-stepS)
(enable-theory reduotion2)))

;; THE INTERACTIVE CONVERGENCE ALGORITHM PROOF

(constrain parameters-in=to (rewrite) ;__

;;Rinds

(and (ratlonalp (R))

(ratlonalp (S))

(rlessp (rational 0 l) (R))

(rlessp (rational 0 l) (S))

(rleq (=tlmes (rational 3 i) (S)) (R))

;; _o

::posR
::lx-S
;;CI

(ratlonalp (=ho))

(rleq (rational 0 i) (=times (rational i 2) (rho))) ;;_o_p(_

(rlessp (rtlmes (rational I 2) (rho)) ;;_o_smsU

(rational 1 1))

(difference n m))

(reduce (r_imes-nat n

(r:imes rho big-si_ma))))))))

n)

(=plus (r_imes rho r)

(rtlmes rho big-sigma)))

delta))

((use (rearranqe-delta-stepl

(d delta)

(i (difference n m))

(x (=rimes (rational 2 I)

(=plus epsilon (rtlmes rho 2))))

(F (=quotient-nat (=times-nat (times 2 m) big-delta)
(difference n m)))

(z (rquot!ent-nat (:tlmes-nat n (r_!mes rhor))

(difference n m)))

(w (=tlmes rho blg-delta))

• (v (=quotient-nat (r_imes-nat n (r_Imes rho big-slgma))

(difference n m))))

(rearrange-delta-step2

(x

(=plus

(rtlmes-na_2 (rtlme2 (rational 2 ")

(=plus epsilon (=times _ho 2)))

(difference n m))

(=plus (reduce (rcimes-na_ (times 2 m) big-delta))

(=plus (reduce (=times-nat n (rtlmes rhor)))

(=plus (rcimes-nat2 (rtlmes rho big-delta)

24

::od_erparame_n

(=ationalp (epsilon))

(ra_ionalp (delta))

(ratlonalp (del_aO))

(ratlonalp (blg-slgma))

(ratlonalp (big-delta))

(numberp (n))

(not (equal (n) 0)) ;;CO_|

(numberp (m)) ;;COb

(lessp (m) (n))

(rlessp (caclonal 0 I) (blg-delta)} ;;CO.:
(rleq (big-slgma) (s)) _(_

(rleq (big-delta) (big-siqma)) g C3

(rleq (:plus (delta) :;C4

(:plus (epsilon)

(rtlmes (rational I 2)

(:times (rho) (s)))))

(big-delta))

(:leq (:plus (del_aO) (crimes (rho) (R))) :;C5

(delta))

(rleq (:plus (rtlmes (rational 2 i) ;;c6

(:plus (epsilon} (rtimQs (:ho) (S))))

(:plus (rquotient-nat (rt!mes-nat (times 2 (m)) (big-delta))

(differenCe _(n| (m}))
(:plus (rquot_.ent-na_ (crimes-nat (n) (:_1_m_j (tho) (¢}))

(difference (n) (m)))

(:plus (r_imes (rho) (big-delta))

(:quot !ent-nat

(rt£mes-nat (n) (c1:Ln_s (rho) (bLq-sLgma|))
(dif_erence (n) (m)))))))

(delta))}

((R (lambda () (raEional 3 i)))

(S (lambda () (rational I i)))

(:ho (lambda () (rational 0 I)))

(epsilon (lambda () (rational 0 i)))

(del_a (lambda () (rational 0 l[))i..

(deltaO (lambda () (rational 0 !))) ++=

(big-sigma (lambda () (rational 1 2)))

(big-delt a (lambda () (rational i 2))) +_

(n (lambda () i))

(m (lambda () 0))))

=

((use (parameCers-int:o)))}

((enable rtimes3-rlessp))) - 1

(dif£erenc e (n) (m)))

(:plus (crimes (rho) (big-delta))

(rquotlent-nat

(:times-nat (n) (:times (rho) (blq-llqjma}))
(di_ferencq (n) (m))}})}}

(lemma blg-slgma-poSitive (rewrite) i -: _:_

(:lessp (rational 0 i) (big-sigma))

((use (rlessp-rleq-transltivity (X (rational 0 1)) (y (blg-delt4)) (Z (bi_-s_a|}))}}

(lemma S-rleq (rewrite)

(and (rlessp (rational 0 i) (S))

(rleq (rational 0 I) (S)))

((use (rlessp-rleq (x (rational 0 i)) (y (s))))))

(lemma c5 (rewrite)

(rleq (rplus (deltaO) (rtlmes (rho) (:))) (delta)))

;;Thisisbstspan_etcn-inuok, olatcdso_mtIcould USEitmore

;;coeveniendy.

(lemma c6 (rewrltei

(rleq (rplus (rtlmes (rational 2 i) (:plus (epsilon) (:flares (rho) (_)))}

(rplus (rquo_ient-na_ (r_Imes-nat (tlmes 2 (m)) (blq-de|¢a))

(difference (a) (m)))

(:plus (rquocienC-nat (:times-nat (n) (r_lMI (r_) (¢}))

(consCrain TO-_ncro (rewrite)

(:a=[onaip (TO))

((TO (la_a () (rational 0 1)))})

(defn Tl (i]

(=plus (TO} (c_lmes-nat [(R))))

(disable tl)

25

(1emma _l-zerop (rewrite)

(implies (zerop l)

(equal (ti _) (reduce (tO)))]

((enable ti rplus-rzerop rtimes-nat-zerop)))

{lemma _l-next (rewrite)

(equal (tl (addl £))

(rplus (tl i) (R)))

((enable commuca_Ivlty-o_-cpius ti rtlmes-nat-addl

commut at ivity2 -o _- rplus

rplus-reduce)))

(lemma not-numberp-ti (rewrite)

(implies (not (numberp i))
(equal (ti i) (_i 0)))

((enable tl rr.imes-nat-zerop)))

;: We use • differa_t _t cquiw|_t no,on o(l_lef. The Rushby appro, c.h uses

:;m .=necass_u,/e,x.u_nc_l qumt_fier.

(defn-sk+ Rdef (s:m l)

(exists pl

(and. (rleq (rational 0 1) pi)

(_leq pl (R) }

(equa1 [reduce _m) (cplus (t! i) pl])}]}

(dean in-inte_val (tm low high)

(and [rleq _OW _m)

[rleq _m hlgh)))

(disable In-interval)

(lemma ln-_nte_"val-inclusion (rewrite)

(implies (and (In-Interval y low x)

(In-interval x low high))

(in-interval y low high))

((enable rleq-_:anei_ive in-in_eL'val)))

[defn in-R (tm i)

[in-interval _m (Ti l) (tl (addZ i_]))

(1emma not-numberp°tn-_ (rewrite)

(implies (no= (num_erp l))

(equal (ln-r tm l)

(ln-r cm 0)))

((enable ln°A " not-numberp-tl)))

(disable in-e]

._ Tb_ shows _ _ _ ckSn_.om _ Rdef-m equ_v_C Subg_iu_y. we won't

(prove-lerama haler-In-R-equivalence [)

(i_f (Rdef tm i)

[in-R _m i))

((use (rdef-necc)

(_def-suff (pi (rpius tm (me9 (_i t))))))

(enable In-ln_e_val_ _dlffe_ence _leq-rdi_fe_ence3 In-_

rleq-cdtfference4 ti-next C_eq-rplus rplus-;_reserves-rleq)

(4o-not-lnducm t)])

;:Ai_n. _e l_by defiaifio.L,quitedi_fe_r_ b_t _,epo_e below

:; _ equivdenc_ or'the two.

25

(defn-sk* Sdef (_m i)

(exists p£
(and (rleq (rational 0 1) pi]

(:leq pi (S))

(equal (reduce tm) (rplus (ti t) (:plus (cdif_e:ence (R) (S)] pl|)])]|

(defn in-$ (tm t)

(£n-lnterval _m

(rdlfference (Ti (addl i)) (S))

(Tl (addl 1))))

(disable in-s)

(lemma sdef-in-s-equlvalence-case3 (rewrite)

(implies (and [equal (rplus (s] tm)
(rplus (ti 1)

(cplus (r) (pi-I L tm))))

(rleq (pi-1 i tm) (4))

(cleq (rational 0 1) (pt-i i tm)))

(r!eq tm (A_plus (tl l) (c])))

((use (rleq-rplus (z tm) (y (:plus (el l) (c))) (x (rdl_ference (s) (pl°l I Cm)))|)

(enable ce_uce-cplus rdifference commucacivi_y-oE-rplus

commutativi_y2-o_-rplus assoclatlvicy-of-cplus

cleq-rdl_erence-rzero]])

(len_'na sde_-equlvalence-hack (rewrite)

[implies (rleq _m (:plus (ti i) (c)]]

(cieq (:plus tm
(rplus (meg (ti 1)) (meg (c)))|

(cational 0 1)))

((enable-theory reductions)

(enable rleq :equal]))

(pcove-lerama Sdef-in-S-equivaience () =
(i_f (Sde_ tm i)

(In-S tm i))

([use (sde_-necc)

(sde_-suff (pl (cdlf_erence tm (rplus (ti t) (rdi_e_e_e (¢) ($)))))J}
(enable-theory reductions)

(enable in-s in-interval rdif_erence associa_ivity-o_-cplus

rleq-cplus ti-nexc sde_-in-s-equivalence-case3 sde_-e_tvalqnce-hack

cleq-rplus-hack rneg-cplus cneg-cneg rdl_ference cle<i-¢p_us°hack2]))

(iemma inRS (rewrite]

[implies (In°$ cm l)
(in-R tm l))

((enable rdiffecence sine clessp-rdiffecence2 in-s In-: in-ificerval

associaclvtty-o_-rplus commucativlty-of-rplus ti-nexC)

(use (_3)lus-pcese_"_es-cleq3
(x (_I 1))

(y cm)

(z (:plus (c) (cneg (s))))))))

(1emma Ti-in-$ (rewrite)

(in-$ (Ti (addl i)) i)

((enable-theory reductions)

(enable ln-s ln-intecva! cdi_ference el-next rleq cequal

assoc£acivity-o_-rplus clessp-rleq s-rLeq rleq-ceflexive)))

(lemma in-S-lemma (cewr_te)

(i_lies (and (in-S tI _)

(ln-S C2 l))

(cleq (cabs (cdifference _i _2)) ($))|

((use (bet.eenness-dis_ance (pl tl) (p2 t2]

(lov (:plus (cA i) (:plus (r) (cneq (_))ll)

(high (:plus (el £) (r)))})

(enable ln-s in-interval cdl_Eecence cneq_rp_US_eg_Cneg :_i_e_

Cl'nex_ associa_lVity-of-cplus cleq-cransictve c4bs-poSic_ve2

cleq-reduce cleq-reflextve s-rleq)))

27

t

i

(lemma ln-S-lemma2 (rewrite)
(implies (and (In-S tl i)

.(ln-S t2 i))
(rleq (cabs (rplus tl (meg c2))) (S))}

((use (in-s-lemma))
(enable rdifference)))

(constrain clock-lntro (rewrite)
(ca_ionalp (clock p co)}

((clock (lambda (x y) (rational 0 1)))))

(len_na :ho-rleqO {rewrite)
(rleq (rational 0 1) (rho))

((use (rtimes-rleq (x (rational 1 2)) (y (rho)}))))

(defn-sk+ good-clock (p low high)
;;Thissaysr.h_p's dock is$oodwi_m_em_[low,_gh]
;;whererhois_emaximumdockd_tm_.
(focal1 (tlt2)

(implies (and (in-interval tl low high)
(in-interval t2 low high})

(rleq (cabs (rplus (clock p el)
(rplus {meg (clock p t2))

(cplus (rneg Cl) t2))))
(crimes (rational I 2)

(crimes (rho)
{cabs (rplus _i (meg t2))))})))}

;;De.l_2 b _efuacdoaw_chreadsthe_erencebetwemthedocksofrmdp

:; mperiodL _eithero(rorpisn_sprocess, thcnallbeusmorL

(constrain delca2-1ntro (rewrite)
(and (ratlonalp (delta2 r p i))

(equal (delta2 p p i} (rational 0 i})
(implies (not (numberp i})

(equal (delta2 r p t)
(delta2 r p 0)))

(equal (reduce (delta2 p q 1))
(delta2 p q 1)))

((delta2 (lambda (r p i) (rationa! 0 1}))))

(defn d2-bac (r p i)
(if (and (not (equal r p))

(clessp (cabs (delta2 r p i)) {big-delta)))
(delta2 c p i}

(rational 0 1)))

(disable d2-bar}

;;Th/susum_stp_0cessesamnumbe_.d(roml..(n_

(defn d2-bar-lisc (n p i)
(if (zerop n)

nil
(cons (d2-bar n p l) (d2-bac-l_st (subl n) p i))))

(1emma lenqth-d2-bar-list (rewrite)
(equal (length (d2-bar-llsc n p i))

(fix n)))

(defn d2-bar-mean (n p I)
(rmean (d2-bar-llsc n p i)})

(dlsable d2-bar-mean)

(defn delta1 (p l)
(d2-bar-mean (n) p i))

(disable deltal)

21

(lemma non-numberp-d2-bar-lis_ (rewrite)
(implies (not (numbe:p i))

(equal (d2-bar-llst n p £)
td2-bar-llst n p 0)))

((enable deltal d2-ba_)))

{lemma non-numbecp-deltai (rewrite)
(implies (not (numberp l))

(equal (deltal p £)
(de!ca1 p 0)))

((enable deltal non-numberp-d2-bar-llst
d2-bar-mean)))

(constrain corrO-in_co (rewrite)
(and (ratlonalp (corrO))

Iequal (reduce (corrO)) (corrO)))
((coc:O (lambda () (rational 0 1)])))

(defn corr (p i)
(if {zerop l)

{corrO)
(:plus (cocr p (sub1 i})

(deltal p (subl i)))))

(lemma ccrr-addl (rewrite)
(equal (tort p (addl i))

(rplus (tort p i) (deitaI p i))) _ - .
_enab2e ncn-numbecp--deZ_ca1 _ co_c_-'_ _ - :

(:plus Cm (coot p 1)))

(disable adjusted)

(lemma adjusted-zero (rewrite)
(equal (adjusted p 0 tm)

_:plus _m (cor:O)))
((enable adjusted)))

_le_ma adjusted-reduce _rewc!Ce;
(equal (adjusted p £ (reduce tm))

(adjusted p i tm))
((enable adjusted rplus-ceduce)))

(lencKa not-numberp-adJusted (rewrite)
(implies (not (numberp [))

(equal {adjusted p _ _m)
(adjusted p 0 tm)))

({enable adjusted}))

(lemma adJusted-rplus (rewrite)
(equal (adjusted p _ (rplus x Y))

(rplus (adjusted p t x) y))
((enable adjusted associ_ivtty-o_-cplus

commucatLvicF-of-rplus)_J

(dean c (p i tm)
(clock p (adjusted p ttm)})

(disable c)

(lemma clock-prop (rewrite)
(equal (c p (add1 l) tm) _.

(c p _ (_plu= Cm (delta_ p _))))
((enable c adjusted corr non-numbecp-del_al

associatlvit¥-of-cplus commu_ativity-of-cplul)))

(lemma c-reduce (rewrite}

(equal (c p i (reduce tin))
(c p i tin))

((enable c adjusted-reduce)))

i

(lemma c-commutativity (rewrite|

(equal (c p i (rplus Y xf)
(c p i (rplus x y)))

((enable commutativity-of-rplus)))

29

(lemma d2-bar-prop (rewrite)
(rlessp (tabs (d2-bar p q i))

((enable d2-bar)))
(big-delta))

(defn skew (p q tm i)
(tabs (rdifference (c p I r.m)

(c q i tmf))}

(disable skew)

(lemma not-numberp-skew (rewrite)
(implies (not (numberp i))

(equal (skew p q tm 1)
(skew p q tm 0)))

((enable skew ¢ not-numberp-adJusted) f)

(defn nonfaulty (p i)
(qood-clock p (adjusted p 0 (tl 0)) (adjusted p i (ti (addl i)f)))

(lemma not-numberp-nonEaulty (rewrite)
(implies (noc (numberp l))

(equal (nonfaulty p i)
(nonfaulty p 0)))

((enable nonfault¥ not-nundoerp-adJusted)))

(defn faulty (p i)
(noc (nonfaulty p i)))

(disable nonfaulty)

(defn-sk+ S1A (if
(forall r

(lmplLes (and (leq (addl (m)) r)

(leq r (n)))
(nonfaulty r i))))

(defn-sk+ SlC (p q i)
(focall tm

(implies (and (nonfaulty p i)
(nonfaulty q i)
(in-R tm i))

(_leq (skew p q tm i) (delta)))))

(lemma not-numberp-SlC (rewrite)
(implies (and (not (numberp i))

(SiC p q 0))
(SIC p q 1))

((use (SiC-nero (i Of (tm (tm i p q))))
(enable not-nundoe_p-skew not-numbecp-nonfaulty not-numberp-ln-c)))

(defn S2 (p i)
(rlessp (cabs (=difference (corr p (addl L))

(tort p-i)))
" (biq-sigma)))

(disable s2)

;: l_ese =re Re bLd¢ .==mp6on= of _e d_e=.

(axiom AO (rewrite)
(rlessp (skew p q (ti O) O) (delcaOff)

(defn-sk+ some-ok-time (p q if
(exists tO

(and (in-S tO i)
(rlessp (cabs (rdlfference (c p i

(epsilon)))))

(rplus tO (delta2 q p i)))
(c q 1 tO)))

30

(axiom A2 (rewrite)

(implies (and (nonfaulty p i)

(nonfaulty q i)

(SlC p q l)

(S2 p 17)

(and [cleq (cabs (delta2 q p i)) (s))

(some-ok-time p q i))))

(lemma d2-bar-list-listp (rewrite)

(equal (listp (d2-bar-list n p i))

(not (zecop n))))

(lemma d2-bar-list-all-rlessp-big-delta (cewrlte)

(all-rlessp (map-cabs (d2-bac-list n p £))

(big-delta))

((enable d2-bar-prop)))

(disable rmean)

(lemma deltal-rlessp (rewrite)

(rlessp (cabs (deltal p i))

(big-sigma))

((use (clessp-rleq-transitivity2 (x (cabs (deltal p i)))

(y (cmean (map-cabs (d2-bar-lls_ (.) p _})))

(z (big-slgma)))

(all-clessp-cleq-tcansitive (x (big-delta)) (y (big-si_[ma)|

(Ist (map-cabs (d2-bar-lls_ (n) p i})))

(mean-bound (Ist (map-cabs (d2-bar-llst (n) p i))) (x (blg-slg_a)|)J

(enable del_al d2-bac-mean abs-mean lls_p-map-rabs d2-bar-list-listp

d2-bar-llst-all-clessp-big-del=a)))

(lemma theorem2 (rewrite)

(S2 p i)

((enable rdifference s2 associativi_y-of-rplus

deltal-rlessp cabs-reduce

:plus-_zerop)))

(lemma upper-bound (rewrite)

(implies (and (ln-s tm i)

{rleg (cabs pi) (rdlfference (r) (s))))

(rleq {adjusted p i (rplus tm pi))

(adjusted p (addl i) (ti (addl (addl i))))))

((use (_leq-transitLve (x pi)

(y (rplus (r) (meg (big-si_ma))))

(z (rplus (C) (de!_al p i))))

(theorem2]

(abs-ax6 (x pl)

(y (rdlfference (r) (s))))

(abs-ax6 (x (rdlfference (core p (addl i))

(core p i))l

(y (big-sigma))))

(enable rlessp-rleq big-sicfma-positive ad_usted-cplus

rneg-greatec-cleq cplus-cancel cplus-pceserves-rleq-hark

associativity-of-rplus tl-next in-s in-interval

rdifference rleq-reduce adjusted cocr-addl s2 rlessp-c_eq}||

(lemma small-shift (rewci_e)

(rleq (meg (r)) (rdifference (tort p (addl i)) (cor_ p i)))

((use (theorem2) (sinr))

(disable corr theorem2 sinr)

(enable rabs-rneg-cleq rl_ssp-transitive rdlfference

rlessp-rleg-tcansitivicy2 s2)))

(lemma ad_-inductlve-step (rewrite)

(implies (:leq tO (adjusted p 1 (ti l)))

(¢leq tO (adjusted p (addl t) (_i (add1 i)))))

((use (small-shift))

(disable core)

(enable rleq-transitlve assocla_ivity-of-rplus rplus-cancel ti-nex_ _]Josted

rleg-reduce rdiffecence rplus-cneg-cleq-hack)))

(defn subl-induc_ion (1)

{if {zerop A)

t

(subl-lnduc_ion (subl i))))

(lemma adJ-always-posttlve (cewriue)

(_leq {_plus (tO) (corrO)) (adjusted p i {ti i))}

((induct (subl-inductlon i))

(enable ti-zerop adJusted-ceduce not-numberp-adJusted

adjusted-zero rleq-reduce rleq-refiexlve adj-inductive-step)))

(len_aa lower-bound (rewrite)

(implies (rleq (rational 0 1) pi)

(rleq (adjusted p 0 (ti 0))

(adjusted p i (:plus (ti t) pt))))

((use (adJ-always-positive))

(enable-theory reductions)

(enable ti-zecop cleq-rplus2 adjusted-zero adJusted-rplus}))

(1emma lower-bound2 (rewrite)

(implies (and (in-s tm i)

(rleq (tabs pi} (rdif_ecence (r) (s))}}

(rleq (adjusted p 0 (ti 0))

{adjusted p i (rplus tm pi))))

((use (lower-bound (pi (rplus _m (rplus (meg (ti l)) pi))))

(rleq-t_ansitive" (x (rational 0 1))

(y {rplus _m

(rplus (rneg (til))

(rplus (cneq (r)) (s)))))

(z {rplus tm (rplus (rneg (ti 1)} pt)))))

(enable cplus-reduce rleq-hack

associativity-o_-rplus rneq-cne 9 (i-next

rneq-rplus rdtf_erence tn-s in-interval

rleq-ceduce rabs-rneq-rpZus)))

(lemma gc-prop (rewrite)

(implies (and (good-clock p tO tn)
(in-interval tm tO in))

(good-clock p tO tm})

((use (good-clock-necc (t2 (t2 tm tO p)) (tl (tl tm _0 p))
(hiqh tn) flow tO) (p p))

(tn-intecval-inclusion (low tO) (high tn) (x tm) (y (tl tm tO p)))

(in-interval-inclusion (low _0) (high tn) (x tm) (y (t2 tm _0 p}}})))

(lemma bounds (rewrite)

(and (rleq (adjusted p 0 (ti 0))

(adjusted p £ (ti (addl £])))

(rleq (adjusted p i (t£ (addl i]))

(adjusted p (addl i) (_i (addl (addl i))))))

{(use (lower-bound2 (pi (rational 0 1)) (tm (ti (addl l)))}

(upper-bound(pi (rational 0 l)) (_m (tl (add1 1}))))

(enable ti-in-s _lessp-rdlfference2 slnr rplus-_zerop

adjusted-reduce rdi fference})]

(lena nonfx (rewrite)

(implies (nonfaulty p (add1 i})

(nonfaulty p i))

((use (go-prop (tO (adjusted p 0 (ti 0))}

(tn (adjusted p

{addl i)

(tl (addI (add1 i}))))

(tm (adjusted p i (tl (addl i))})))

(enable nonfault¥ in-interval bounds)))

(lemta sla-lem_a (rewrite}

{implies (sla (add1 i))
(sla l})

((use (sla-necc (r (r-1 i)) (i (add1 1))))

(enable nonfx)))

32

(lemma lemma2 (rewrite)

{implies (and (nonfaulty p (addl i))

(cleq (adjusted p i tm)

(adjusted p (addl i) (ti [addl (addl i)))))

(rleq (adjusted p 0 (ti 0))

(adjusted p i tm))

(rleq (adjusted p i (=plus _m pi))

(adjusted p (addl i) (ti (addl (addl i)))))

(rleq (adjusted p 0 (tl 0)) (adjusted p i (=plus tm pi))))

(=leg (cabs (rplus (c p i (rplus tm pl))

(rplus (meg (c p i tm))

(meg pi))))

(crimes (rational i 2) (cLimes (rho) (rabs pl)))))

((use (good-clock-nero (low (adjusted p 0 (ti 0)))

(high (adjusted p

(addl i)

(ti (addl (addl i)))))

(t2 (adjusted p i tm))

(tl (adjusted p i (=plus tm pi)))))

(enable adjusted-=plus associativity-of-rplus nonfaulty c
=abs-reduce meg-=plus reduce-meg in-interval)))

(iemma lemma2a (rewrite)

(implies (and (nonfaulty p (addl i)) . ::_ .: _::

(rleq (cabs (=plus pi phi)) (=difference (r) [s)))

(cleq (cabs phi) (=difference (r) (s))_

(in-s _m i))

(rleq (tabs (rptus (c p i (_plus _m (rplus phi pi)))

(rplus (meg (c p i (rplus tm phi)))

(cneg pi))))

(rtlmes {rational I 2) (=times (rho) (cabs pl)))))

((use (lemma2 (tm (=plus tm phi))))

(enable upper-bound lower-bound2 assoclativity-of-rplus

=abs-commutativity-hack)))

(lemma lemma2b-step (rewrite)

{implies (and (cleq (cabs phi) (s))

(rleq (cabs pi) (s)))

[rleq (cabs (=plus pi phi))

(=plus (r) (meg (s)))))

((use (=leg-transitive (x (cabs (=plus pi phi)))

(y (=plus (cabs pi) (cabs phi)))

(z {=plus (r) (meg (s))))))

(enable times-3-rleq-rewrite rabs-rplus-r!eq s-rleq paramete_s-int£o)))

(lemma lemma2b-step2 (rewrite)

(implies (rleq (cabs phi) (s))

(r!eq (cabs phi)

(=plus (r) (meg (s)))))

((enable _imes-3-rleq-rewrite2 s-cleq parameters-ant=o)))

(lemma lemma2b (rewrite)

(implies (and (nonfaulty p (addl i))

(rleq (cabs phi) (s))

(rleq (cabs pi) (s))

(in-s tm i))

(rleq (cabs (=plus (c p i (=plus tm (=plus phi pi)))

(=plus (cneg (c p i (=plus tm phi)))

(meg pi))))

(r_ime$ (rational 1 2) (=times (rho) (cabs pi)))))

((enable iemma2a lemma2b-step cdifference lemma2b-step2)))

(lemma lemma2c (rewrite)

(implies (and {nonfaulty p (add! i))

(rleq (cabs pi) (s))

(ln-s tm i))

(=leq (cabs {=plus (c p i (=plus tm pi))
(=plus (meg (c p i _m)) r_ i: -

(=n,_-)_)) _
(rtlmes (rational i 2) (c_imes (rho) {cabs pl)))))

((use (lemma2b (p&i (raEisnai 0 i)))) "

(enable s-=leg rplus-rzerop =plus-reduce

c-reduce)))

i •

(lemma lemma2d (cewrite)
(implies (and (nonfaulty p i)

(cleq (rational 0 1) pl)
{cleq pl (el))

(cleq (cabs (cplus (c p i (cplus (ti i] pi))
- (cplus (cneg (c p i (ti i)))

(cneg pl))))
(c_imes (catlonal i 2) (crimes (cho) (cabs pi)))))

((use (qood-clock-necc (lou {adjusted p 0 (_i 0}))
(hiqh (adjusted p i (tl {addl I))))

(tl (adjusted p L (cplus {ti L) pL)))
{t2 (adjusted p i (tii)))))

(enable-theocy ceductions) .
{enable nonfaulty ln-lfltecval lower-bound adJusced-cplus _l-next

cplus-cancel adJusted-zeco tl-zecop adJ-always-posi'.ive
cleq-cplus2 cleq-reflexive cleq-tcansitive c cneq-.'plus
associa_ivlty-of-cplus cabs-ceduce)) _

{lemma cabs-neqate-lenvaal-hack (cewci_e)

(equal (cabs (cplus (c p i tO)
(cplus {delta2 q p i)

(rneg {c p I
{cplus tO

(delta2 q p 1))}))))
{cabs (cpLus (c p i

(rplus tO (delta2 q p l)))
(cplus (cneq (c p i tO))

(rneg {delta2 q p 1))))))
((use (cabs-neqate-hack (x (c p i tO))

(y (delta2 q p 1))
(z (c p i (cplus cO (delta2 q p 1))))))))

{lemma lemmal (cewcite)
(£mplies (and (sic p q L)

(s2 p L)
(nonfaulcy p (addl i))
(nonfaulty q {add1 i)))

{clessp (cabs (delta2 q p 1)) (biq-delta)))
{ (use (a2)

(some-ok-t ime-necc)

(slc-necc (tin (cO-1 I p q)))
(cabs- rp IUS- cleq2

{x (cplus (c p t (C0-1 I p q))
{cplus {delta2 q p 1)

(cneg (c p 1
(cplus (tO-1 I p q)

(delta2 q p £)))))))
(y (cplus (c q i (tO-1 I p q)) =:

(meg (c p i (tO-I i p q)))))
(z (cplus (c p 1

(cplus (cO-i i p q) (delta2 q p i}))
{cneg (c q t {_0-1 I p q))))))

(le.una2c (pi (delta2 q p i)) (tin (tO-1 t p q)))
(clessp-cleq-Ccanst ttvt ty2

(x {cabs (delta2 q p 1)))
(y (_plus (cabs (cplus (c p i (C0-1 I p qj)

(cpius {deLta2 q p i)
{cneq (c p i

(cplus (tO-1 I p q)
(delta2 q p i)))))))

(cplus (cabs (cplus (c q I (C0-I i p q))
{cneq (c p i (tO-1 i p q)))))

(cabs (cplus (c _ _t -

{cplus {tO-1 I p q) {delta2 q p i)))
(cneq (c q i (tO-1 I p q))))))))

(z (big-delCa)))

33

34

(rlessp-rleq-_ransitlvicy

(× (cplus (tabs (=plus (c p i (tO-1 i p q))

(=plus (delta2 q p i)

(meg (c p i

(=plus (tO-1 i p q)

(del_a2 q p i)))))))

(=plus (tabs (=plus (c q i (tO-I i p q))

(_neg {c p i (tO-1 i p q)))))

(cabs (=plus (c p i

(cplus (tO-1 i p q) (del_a2 q p i)))

(rneg (c q i (tO-I i p q))))))))

(y (=plus (delta)

(=plus

(z (big-delta)))

(rleq-transitive

(x (cabs (=plus

(epsilon)

(rtimes (rational 1 2)
(rtimes (rho)

(c p i (tO-1 i p q))

(rplus (delta2 q p 1)

(cneg (c p 1

(cptus

(s))))))

(y (rtlmes (rational 1 2)

(rclmes (rho)

(tO-1 i p q)

(delta2 q p l))))))))

(tabs (de!_a2 q p i)))))

(z (rcImes (rational 1 2) (r_imes (rho) (s)))}))

(enable rabs-cdlf_ecence cleq-rtlmes-hack rho-rleqO rlessp-rleq nonfx

Inrs skew rdlfference assoclatlvlty-of-rplus

pacamete_S-intro rleq-clessp-hack tabs-negate-lethal-hack)

[enable-_heory reductions)))

(lena lemma3 (rewrite)

(implies (and (slcp q 1)

(s2 p t}

(oonfaulty p (addl i))

(nonfaulty q (addl i))

(in-s tm i))

(rlessp (cabs (rplus (c p i (=plus tm (delta2 q p i)))
(=neg (c q i" _m))))

(rplus (epsilon)
(crimes (rho) (s)))))

((use (a2)

(some-ok-_ime-necc)

(rearrange-al_

(X (c p i (rplus _m (del_a2 g p 1))))

(u (c p i _ _ _...... _;_:,

(rplus (tO-1 i p q) (delta2 q p i))))

(v (rplus _m (meg (tO-1 i p q))))

(w (c q i (tO-1 i p q))))

(lemma2c

(P q)

(tm (tO-1 t p q)) --

(pi (=plus _m (meg (tO-i i p q)))))

(lemma2b

(tm (tO-I i p q))

(phi (delta2 q p l))
(pi (=plus tm (meg (tO-i i p q))))) --.

(rlessp-rleq-transt_ivity2 ,_
(x {_abs (=plus (c p i (=plus _m (delta2 q p l)))

(rneg (c g i tm)))))

(y (=plus (tabs (=plus (c p i (rplus tm (delta2 q _ i)))

(cplus (meg (c p i::: ±. :

(=plus (deL_e2 q p i} (tO-1 I p q)))|

(=plus (meg tm) (_0'i i p q))}_]

(rplus (tabs (rplus (c p
(rplus (delta2 q p i) (tO-1 i p q)))

{_neg (c g i (tO-11 p q)))))

(tabs (rplus {c q i tm)

{rplus {_neg (c q i (tO-t £ p q)))

(rplus (rneg tm) (_0-i i p q)))_)))}

(z (:plus (epstlon)
(crimes (cho) (s)))))

|

[rleq-transltive
(x (rplus (cabs (rplus (c p i (rplus tm (delta2 g p i)))

(cplus (meg (c p i

(cplus (delta2 q p i| (tO-I i p g))))
(cplus (cneg tm) (tO-I i p q)))))

(cabs (cplus (c q i tm)

(rplus (cneg (c q i (tO-1 i p q)))
(cplus (cneq tm) (tO-1 i p q}])|)))

(y (crimes (the)
(cabs (cplus tm (rneg (tO-1 i p q))))))

(z (crimes (the) (s)))))
(enable-theory reductions]
(enable in-s-lemma2 cho-cleqO clessp-rplus-tciple rplus-ceduce

rneg-cneg rneg-rplus in-s-lemma2 c-reduce nonfx rdifference
c-commutativity rlessp-tcansi_ive associativity-of-cplus
rho-cleqO clessp-rleq-hack rleg-ctin_Ds-hack rleq-hal_-rplus)))

(lemma sublemmal (rewrite]
(implies (and (slcp r i)

(s2 p t)
(nonfaulty p (add1 t))
(nonfaulty r (add1 t)))

(equal (d2-bar r p 1)
(delta2 c p i)))

((use (ie_ai (q r)))
(enable d2-bac delta2-incro))]

(lemma lemma2x (rewrite)
(implies (and (ale p r t)

(s2 p I)
(nonfaulty p (addI i])
(nonfaulry r (addl ¢])
(ln-s tm i))

(=leq (cabs (cplus (c p i (rplus _m (delta2 r p i))}
(cplus (cneg (c p i tm))

(rneg (delta2 r p l)))]]
(crimes (rational 1 2) (crimes (the) (big-delta]))))

((use (lenvaa2c (pi (delta2 c p I)))

(lenu_l (q r))
(cleg-tcansitive

(x (cabs (rplus (c p i (cplus tm (delta2 c p i)))
(cplus (cneg (c p i Cm))

(cneg (delta2 c p i))))))
(y (crimes (rational 1 2) "

(rtlmes (the) [cabs (delta2 r p i)))))
(z (crimes (rational 1 2)

(crimes (rho) [big-delta))))))
(enable rleq-ccimes-hack rho-cleqO rlessp-rleg nonfx a2

rleg-ccimes-pos2 cleq-tcansitiye)))

(lemma lemma4-versionl (rewrite)

(implies (and (slc g r 1)
(slcp q 1)
(slc p r i) "
(s2 p i)
(s2 q i)
(s2 r i)

(nonfaulty p (addl i))
(nonfaulty g (addl i))
(nonfaulty c (add1 i))
(ln-s tm i))

(rlessp (cabs (cl:lus (rplus (c p i Cm)
(d2-bar c p i))

(cplus (rneg (c q i tm))
(meg (d2-bar r q i)))))

(cplus (crimes (rational 1 2] (rtimes (cho) (big-delta)J)
(rplus (crimes (rational 1 2) (crimes (the) (big-delta)J)

(cplus (cplus (epsllon) (crimes (the) (s)))
(cplus (epsilon) (crimes (the) (s))))))))

((use (rearrange3
(x (rplua (c p i tm) (d2-bar r p i)))
(y (rplus (c q i tm) (d2-bar r q i)))
(u (c q i (cplus tm (d2-bar r q i))))
(v (c p i (rplus tm (d2-bar r p i))])
(w (c c i tm)))]

35

36

(enable-theory reductions]

(enable sublemma! lemma3 lemma2x rdifference rlessp-rleq-tcansitivity2

rlessp-rleq rlessp-rplus-pair cneg-rp!us cleq-rlessp-rplus-pair)))

(lemma lemma4-hack (rewrite)

(equal (rplus z (rplus z (rplus x {rplus y (rplus x F)))))

(rtlmes (rational 2 i) (=plus x (rplus y z))))

((enable rtimes-addl r_imes-rzerop commuta_ivlty-of-rplus

commutatlvity2-of-rplus)))

(lemma lemma4 (rewrite)

(implies (and (slc q r i)

(sic p q i)

(sic p r i}

(s2 p l)

(s2 q i)

(s2 r i)

(nonfaulty p (addl i))

(nonfaulty q (addl i))

(nonfaulty r (addl i))

(in-s tm i))

(rlessp (cabs (cplus (c p i tm)

(rplus (d2-bar r p i)

(.-plus (meg (c q i tin))

(cneg (d2-bar r q i))))))

(rtlmes (rational 2 I)

(rplus (epsi !on)

(rplus (rtlmes (rho) (s))

(rtlmes (rational i 2)

(rtimes (cho) (blg-delta))))})}}

(fuse (lemma4-versionl))

(enable assoclativlty-of-rplus lemmaa-hack)))

(lemma lemma5 (rewrite)

(implies (and (slc p q i)

(nonfaulty p (addl i))

(nonfaulty q (addl i}}

(in-s tm i))

(clessp (cabs [rplus (c p i =m)

(rplus (d2-bar r p i)

(rplus (meg (c q i tm))

(meg (d2-bar r q i)))i)) - -
(rplus (delta) (crimes (ra_iona! 2 1) (big-delta))))}

((use (rearrange4 (a (c p i tm))

(b (c q i tin)) " :: . __: _:_: : _ : __ :

(x (d2-bar r p i))

(y (d2-bar r q i))) :

(slc-necc))

(enablerdi_ferencea,,oclatlvlty-o_-_pl_sr.eg-rpl._i_:: :::- :i
rlessp-rleq-transitivity2 r!eq-rlessp-cplus-pair skew nonfx £ncs

rlessp-times2 d2-bar-prop)})

{lemma rleq-rplus-hack] (rewrite)

(equal (rleq (rplus x (rplus y z}} (rplus y w))

(rleq (cplus x z) (reduce w)))

((enable cleq requal))) = ._:

(lemma sublemma-a (rewrite)

(implies (and (nonfaulty p i) __- :_ :: . _:
(nonfaulty q i) - -

(in-r tm i))

(rleq (skew p q tm i)

(rplus (skew p g (ti i) i)
(crimes (cho) (c))))}

((use (reaccange-alt (x (c p i tm)) - --

(y (c q ! tin)) _ :
(u (c p i (it i))) _
(v (rplus tm (:neg (ti i))_)) :--_ _:_

(lemma2d (pi (rplus tm (_'neg (_i _>))) - :

(lemma2d (p q) {pi (rplus tm (meg (ti i)))))) . . " .

37

(enable-cheocy ceducCions)
(enable skew rdiffecence cneq-cplus c-reduce C_-nex_ cabs-positive2

:plus-cleq-rewclte cplus-cleq-cewcite2 cleq-rcimes-hack ln-r
In-interval cho-cleqO cleq-_cansicive rieq-cplus-hack3 cleq-half-cplus
rleq-cCimes-hack rplus-cleq-cewcite)))

(lena delCal-cleq-s (cewcice)
(cleasp (cabs (del_al p i)) (s))

((use (theorem2))
(enable s2 cdlffecence cor_-addl assocla:ivicy-of-rplus

cabs-reduce clessp-transi_lve-c_eq-r_essp-cela_on) t)

(lemma suble_a2 (cewci_e)
(equal (skew p q Cm (addl it)

(cabs (cplus (c p t (cplus tm (delcal p l)))
(cneg (c q i (cplus tm (deltal q t)))))))

((enable skew cdtffecence clock-poop)))

(lena lemma6 (rewrite)
(implies (and (nonfaulcy p (addl i))

(nonfaul_y q (add1 1))
(in-: tm (addl i}))

(rleg (skew p q Cm (addl i))
(cplus (cabs (rplus (c p ! (tl (addl 1)))

(c_ius (deltal p 1)
(rplus (cneg (c q i (el (add1 it)))

(cneg (delcal q 1))))))
(rpius (crimes (:hod (c))

(crimes (rho) (big-sigma)D))))
((use (sublemma-a (i (addl 1)))

(rearcange

(x (c p £
(cplus (Ci (addI i)) (de_:al p £)t))

(y (c q £
(cplus (ti (addl i)) (de!:al q £)t))

(u (c p I (ti (addl l))))
(v (delta1 p 1))
(w (c q i (Cl (addl i))))
(z (delCal q i)))

(lemma2c (Cm (CA (addl £])) (pi (del_al p £)))
(lenuna2c (cm (ci (addl i))) (pi (delcal q i)) (p q)))

(disable coccectness-of-cancel-cplus-:_eq)
(enable cdiffecence cneg-cplus suble_a2 cplus-cleq-clessp-cance12 cleq-ccansit£ve

cplus-cleq-clessp-cancel deLcal-cLeq-s _L-in-s cieq-ccimes-pos2 clessp-cleq
delcal-clessp rho-:leqO cleq-_cimes-hack cleq-half-rplus)))

(defn ll-tecm-lisc (p q i c)
;;Thisler, cm_¢_ofmn_s_ w_chd_meanbapp_dmlm.natl.
;;Nodc_dmcdmydon'th_ve_ed)_olum-v_ueappfied.
(if (zerop c)

hi1

(append (ll-Cecm-list p q £ (subl c))
(list (rplus (c p i (c1 (addl i)t)

(cplus (d2-bac c p £)
(cplus {cneg (c q t {ti (addl l))))

(c_e_ (d2-bac c q ¢)))))))))

(lemma lenqth-ll-cecm-ltsc (cewcice)
(equal (length (ll-cecm-lisc p q £ c))

(fix c) t
((enable ll-cerm-llsC)))

(lenwa ll-Cecm.llst-ce_ciCe (rewciCe)
(equal (csum (lI-tecm-list p q I rt)

_cplus (crimes-nat c (c p i (it (add1 i))))
(rplus (rsum (d2-bac-ltsc c p i))

(rplus (cneq (cCimes-naC c (¢ q I (Ci (addl i)))))
(cneg (rsum (d2-bac-list, c q i)))))))

((enable 11-_erm-llsc d2-bar-lisc rsum _cimes-nac-ze_op crimes-nat-add1
associaCiviCy-of-cplus cneg'cpius
ceduce-cplus rsum-append cplus-czecop
cor_nu_a_ivicy-of-cpius ceduce-_educe rplus-ceduce)))

38

(lemma II (rewrite)

(r!eq (cabs (=plus (c p I {tl (addl i)))

(=plus (deltal p i)

(rplus (rneg (c q I (ti (add1 l))))

(=neq {delcal q i})))})

(=mean (map-cabs (ll-term-list p q I (n)))))

((use (abs-mean (ls_ (ll-cecm-list p q I (n)))))

(enable rleq-_ransltive =mean ll-term-list-rewci_e lenqth-_1-term-liet

cquotient-nat-=plus cquotlent-nat-:tlmes-nat cplus-reduce

cneg-ctlmes-nat deltal d2-bar-mQan =mean

length-d2-bar-llst cneg-cquotient-nat cleq-reflexive)))

(lemma 12 (rewrite)
(:!eq (cabs (cplus (c p i (tt {addi i)))

(=plus (deltal p i)

(=plus (rneg (c q I (ti (addl i))})

(rneg (del:al q i))))))

(rquotient-nat (=plus (=sum (ficstn (map-cabs (ll-tecm-llst p q i (n||) (m)||
(rsum (restn (map-cabs (ll-_ecm-lis_ p q I (n))) {m))))

(n)))

((use (11))

(enable cplus-rsum firstn-append-restn cmean

length-map-cabs length-ll-term-lis_)))

(lemma bound-faulty (rewrite)

(implies (and (SlA (addl i))

(SiC p q i)

(not (ze_op r))

(nonfaulty p (addl i))

(nonfaul_y q (addl l)))

(=lessp (cabs (=plus (c p i (ti (addl i)))

(=plus (d2-ba= c p I)

(=plus (cneg (c q I (_i (add1 i))))

(rneg (d2-bar c g 1))))))

(cplus (delta) (crimes (=a_lonal 2 I) (big-delta)))))

((enable lemma5 ti-!n-s)))

(darn _irs_n-ll-lnduc_ion (m n)

(if (zerop n)

(if (zerop m)
t

(if (equal m n)

t

(firatn-ll-induction m (subl n)|)))F

(lemma flcstn-ll-term-llst (rewrite)

(implies (leq m n)

(equal (firstn (map-cabs (ll-cecm-[ist p q i n)) m)

(map-cabs (ll-tecm-lis_ p q i m))))

((induct (firs_n-ll-inductlon m n))

(enable map-cabs-append flcstn-n plis_-map-rabs

length-map-cabs length-ll-tecm-lis_,

flrstn-append-lessp)))

(lemma 13-sublemma (rewrite)

(implies (and (leq m (n))

(S1A (addl i))

(SlC p q l)

(nonfaulty p (addl i))

(nonfaulty q (addl I)}

(not (zerop m)))

(all-rlessp (fics_n (map-cabs (ll-term-list p q i (n))) m)

(=plus (delta)

(=tlmes (rational 2 i) (big-delta)))))

((induct (subl-lnduction m)}

(enable all-clessp flcstn map-cabs ll-term-llst bound-faulty

map-cabs-append ficstn-ll-_ecm-llst all-rlessp-append)))

•39

(lemma 13 (rewrite)
(implies (and (SIA (addl i))

(SlC p q i)
(nonfaulty p (addl i))
(nonfaulty q (addl lj)
(lessp m (n))}

(rleq (rsum (firstn (map-cabs (ll-term-itst p q i (n))) m))
(rtlmes-nat2 (.-plus (delta) (ctlmes (rational 2 1) (big-delta)))

m)))

((use (sum-bound (Ist (nap-cabs (ll-term-list p q Im)))
(x (rplus (delta)

(crimes (raClonal 2 i)
(blg-delta)))])

(13-sublen_a))
(enable firstn rsum rtimes-naC-rc!mes-na_2 r_imes-nat-zerop

rleq-reflexlve firs_n-[l-term-!_st rtimes_nat-ctimes'nat2
length-map-cabs length-iT-term, list rlessp-rleq lls_p-map-rabs)))

(defn-sk+ theoreml-one-step (I)

(forall (p q)
(implies (SIA 1)

(SiC p q t))))

(lemma bound-nonfaulty (rewrite)
(implies (and (SIA (addl i))

(SlC p q £)
(leq (addl (m)) =)
(leq r (n))
(nonfaul_y p (addl l))
(nonfaulcy q (addl i))
(theoreml-one-s_ep i))

(rlessp (cabs (rplus (c p i (ti (addl 1)))
(rplus (d2-bar r p i)

(rplus (rneg (c q i (ti (addl i))))
(cneg (d2-bar r g i))))))

(triMs (rational 2 1)
(rplus (epsllon)

(rplus (ruimes (rho) (s))
(rtlmes (rational I 2)

(climes (rho) (big-delta))))))))
((use (S!A-ne¢c (i (add1 i)))

(theoreml-one-step-necc (p q) (q r))
(theoreml-one-step-necc (q r)))

(enable le..M4 theorem2 S1A-lemma el-in-s)))

(defn 14-term-list (p q I m c)
(if (leq m r)

(cons (cabs (cplus (c p i (ti (addI L)))

(rplus (d2-bar m p 1)
(rplus (cneg (c q i (ti (addl i))))

(rneg (d2-bar m q i))))))
(14-term-list p q t (addl m) r))

nil)
((lessp (difference (addl r) m))))

(lemma 14-tecm-stcip-Iast (rewrite)
(implies (and (leq m r)

(not (zerop r)))
(equal (14-term-llst p q i m c)

(append
(14-term-list p q 1 m (subl =))
(list (cabs (rplus (c p i (CI (addl i)))

(rplus (d2-bar c p i)
(cplus (rneq (c q t (ti (addl 1))))

.... (cneq (d2-bar r q i)))))))))))

(lemma lenqth-14-term-list-froml (rewrite)
(equal (length (14-term-list p q i 1 r)) (fix r))
((induct (subl-lnduction r))

(enable 14-term-strip-last)))

4O

(lemma length-14-term-list (rewrite)

{equal (length (14-term-list p q i (addl m) r))

(difference r m))

((enable leng_h-14-term-lis_-froml 14-term-strip-last)))

(defn ll-14-relation-induction (m n)

(if (not (lessp mn))

(if (equal m n)

t

(if (lessp n m) t f))

(ll-14-celaclon-lnduction m (subl n))))

(lemma ll-14-term-lists-relation (rewrite)

(implies (and (not (zerop n))

(leg m n))

(equal (resin (map-tabs (ll-term-l/st p q i n)} m)

(14-term-list p q i (addl m) n)))

((induct (ll-14-relation-induc_ion m n))

(enable restn-n plistp-map-rabs length-map-tabs length-ll-term-list

resin-append map-tabs-append restn-l 14-term-strlp-last)))

(lemma listp-14-term-llst (rewrite)

(implies (and (lessp m n)

(not (zerop n))]

(ltstp (i4-term-list p q i (addi m) n)))

((enable 14-_erm-strip-last)))

(lemma 14-sublemma (rewrite)

(implies (and (ieq r (n))

(leq (addl (m)) r)
(SIA (addl i))

($IC p q I)

(nonfaulty p (addl i))

(nonfaulty q (addl i))

(theo_eml-one-step I))

(all-rleesp (14-_erm-ltst p q i r (n))
(crimes (rational 2 1)

(rplus (epsilon)

(rplus (rtimes (rho) (s))

((enable bound-nonfaulty)))

(rtlmes (rational I 2)

(rtimes (:ho) (biq-delta))))))))

(lemma 14-versionl (rewrite)

(implies (and (lessp m (n))

(leq (m) m)
(S1A (addl i))

(SlC p q i)

(nonfaulty p (addl i))

(nonfaulty q (addl i))

(theoreml-one-step i))

(rleq (rsum (14-term-list p q i (addl m) (n)])

(crimes-nat2 (rtimes (rational 2 1)

(rpius (epsilon)

(rplus (rtlmes (_ho) (s))

(rtimes (rational 1 2)

(rtimes (rho) (big-delta))))))
(difference (n) m))))

((use (sum-bound (let (14-term-iist p q i (addl m) (n)))

(x (rtlmes (rational 2 I)

(rplus (epsilon)

(rplus (rtimes (rho) (s))

(rtimes (rational I 2)

(rtimes (rho) (biq-delta))))))))}

(enable rtlmes-nat-rtlmes-nat2 rlessp-rleq

listp-14-_erm-list length-14-_erm-lis_ 14-sublemma)))

(lemma 14 (rewrite)

(implies (and (S1A (addl 1))

(SlC p q i)

(nonfaulty p (add1 1))

(nonfaulty q (addl i))

(theoreml-one-step i))

41

(_leq (rsum (resin (map-cabs (ll-_e_m-llst p q i (n))) (m)))
(rtimes-nat2 (rtlmes (rational 2 1)

(rplus (epsilon)
(rplus (reLines (rho) (s})

(rtimes (rational 1 2)
(r_tmes (rho) (big-delta))))))

(difference (n) (m)))))

((enable ll-14-term-llsts-relation 14-vecsionl)))

(1emma 15 (rewrite)
(implies (and (S1A (add1 i})

(SlC p q i)
(nonfaulty p (add1 1))
(nonfaulty q (addl i))
(theoreml-one-s_ep i))

(rleq (tabs (rplus (c p i (ti (add! l)))
(rpius (deltal p i)

(rplus (meg (c q i (ti (addl l))))
(rne 9 (delta1 q i))))))

(rquotient-nat
(rplus (rtimes-nat2

((use (dlv-mon2

(rplus (delta) (rtimes (rational 2 i) (big-delta)D) (m})
(rtimes-nat2

(rtimes (rational 2 i)
(rp!us (epsilon)

(rplus (rtimes {rho) (s))
(rtlmes (rational I 2)

(rtimes (rho) (big-delta))))))
(difference (n) (m))))

(n})))

(x (_sum (append (fi_stn (map-tabs (ll-te_m-list p q i (n})) (m))
(resin (map-=abs (ll-te_m-llst p q i (n))} (m)))))

(y (rplus
(rtlmea-nat2 (rplus (delta) (rtimes (rational 2 1) (big-delta))) [m))

(rtimes-nat2 (rtimes (rational 2 1)
(rplus (epsilon)

(_lus (reiNs (rho) (a))
(r:l_s (rattonel 1 2)

(rtimes (rho) (big-delta])))))
(difference (n) (m)))))

(z (n}))
(rleq-transitive

(x (tabs (=plus (c p i (ti (add1 i)))
(rplus (deltal p i)

(rplus (meg (c q i (ti (addl 1))))
(zneg {deltal q i)))))))

(y (rquotient-nat
(=sum (append (£irscn (map-cabs (ll-term-list p q I (n))) (m))

(_escn (map-tabs (ll-term-list p q i (n))) (m))))
(n)))

(z (rquotient-nat
(rplus

(r_tmes-nat2 (rplus (delta) (crimes (rational 2 1) (big-delta)D) (m))
(_times-nat2 (_tlmes (rational 2 1)

(rpius (epsilon)
(rplus (rtimes (rho) (s))

(rtimes (rational 1 2)
(_timea (rho) (big-delta))))))

(dlEference (n) (m))))
(n))))}

(enable rleq-_raneitive rsum-append rleq-rplus-pair 12 13 14)))

(lemma culmination (rewrite)
(implies (and (S1A (add1 i])

(SlC p q 1)
(nonfaulty p (addl i))
(nonfaulty q (addl i))
(in-r tm (addl i))
(theoreml-one-step i))

42

(=leq (skew p q _m (addl I))

(rplus (=quotient-nat

{rplus

(=rimes-nat

(m) (rplus (delta)

(=times (rational 2 I) (big-delta})))

(rtlmes-nat

(difference (n) (m))

(rtlmes (rational 2 l)

(rplus (epsilon)

(rplus (=times (rho) (s))

(=times (rational 1 2)

(=times (rho) (big-delta) t))))))
(n))

(=plus (rtlmes (rho) (r))

(rtlmes (rho) (big-slgma})))))

((use (151

(rleq-transitlve

(x (skew p q tm (add! i)))

(y (rplus (tabs (rplus (c p t (tt (addl i)))

(rp_us (del:al p i)

(=plus

(meg (c q I (ti (add1 1))))

(meg (delta1 q i))))))

(=plus (=times (rho) (r)) (r_tmes (rho) (big-sigma)))))

(z (rplus (rquotlent-nat

(rplus [r_imes-nat

(m) (rplus (delta)

(rtlmes (rational 2 I)

(blg-delta))))

(rtlmes-na_

(difference (n) (m))

(:_Imes (rational 2 i) ° T-*-c _ _

(=plus (epsilon)

(=plus (=times (rho) (s))

(r_imes (rational I 2)
(r_Imes (rho) (blg-delta))))))})

(n)}

(rplus (rtlmes (rho) (r)) (rtlmes (rho) (big-sigma)))))))

(enable rlessp-rleq lemma6 rleq-rplus-patr rleq-reflexlve r_lmes-nat-r_imes-nat2)))

(lemma theoreml'basis (rewrite)

(SlC p q 0)

((use (sublemma-a (f 0) (tm (tm 0 p q)))

(rleq-tcansitlve (x (skew p g (tm 0 p q) 0)}

(y (rplus (skew p q (ti 0) 0) (=times (rho) (r))))

(z (delta)))

(aO) (c5))

(enable SiC-surf rlessp-rleq rlessp-rleq-transltlve3]))

(lemma theoreml-ind-step0 (rewrite)

(implies (and (S1A (addl i))

(SZC p q I}

(theoreml-one-step i))

($1C p q (add1 i)))

((use (rearrange-delta (delta (delta))

(blg-sigma (big-sigma))

(r (r))

. {n (n))

(big-delta (big-delCa))

(m (m))

(s (s))

(rho (rho))

(epsilon (epsilon)))

(c_) (culmlnaC_on (tm (Cm (addZ L) p q_)))

(enable rleq-transltlve)))

(lemma theoreml-ind-step (rewrite)

(IMPLIES (AND {NOT (ZEROP I))

(THEOREMI-ONE-STEP (SUB1 I)))

(THEOREMI-ONE-STEP It)

43

((use (theoceml-ind-sCepO (i (subl l)) (p {p l)) (q (q i)))
(Cheoceml-one-sCep-necc (i (subl l)) (p (p i)) (q (q i)))
(CheocemI-one-step-suff))

(enable SIA-lemma|
(dis.ble theoceml-one-step-suf_)))

(lemma cheoreml-versionl {rewrite)
(theoreml-one-step i)

((induct (subl-inductton l})
(enable theoceml-ba$is not-numbecp-SlC cheoreml-ind-sCep)))

(lemma Cheoreml (cewrice)
(implies (SIA £)

{SlC p q i))
((use (Cheoceml°versionl)

(theoceml-one-step-necc))))

REPORT DOCUMENTATION PAGE _orm Approved
OMB No 0704-0f88

Pubil(reporting buroen for th_s To_ieCtlOn of in/Ormatlor_ :S estJmateo to aversge ! hour Der resDorSe. It_CIuOmg the trf_e for reviewing mstruc[lOnS, seatchtng existing Clara _Ourc_.
9athen_j &n¢l mainti_nlhg the Oal_ needed, and completing &no reviewing the collection of _'_ormatlOt_ %end comments re<Ji)r01ng this burden e_tlmate O? ally other aspe_ of _ht_

¢o_)ectiO¢l of ln|ofer_tlofL i_c|u(Jlflg $_ggestlon_ for reducing this burOen, tO Washington HeaOauarter$ _rvlces, Directorate tot Iflf0rma_tOn OIDeratto¢'l$ and Reports. IZt5 Jefferson
D4w_ Highwlyo _ite |204. Arhngton. VA 22202-4]02, and to the Offlce of Mar, age_',ent an0 Budget PaperwOrk Re0UCt=On Pro ect (0704-0 88), Wa_,h_ngton. DE 20S03

.Jr

I. AGENCY USE ONLY (Leave b&_nk) 2. REPORT DATE =I. REPORT TYPE AND DATES COVERED

• April !992 Contractor R_n_r t
4. TITtlE AND SUBIIILE S. FUNDING NUMBERS

Verifying the Interactive Convergence Clock C NASI-18878

Synchronization Algorithm Using the Boyer-Moore
Theorem Prover

&. AUTHOR(S)

William D. Young

7. PERFORMING O%GANIZATION _ AND ADDRESS(ES)

Science an_ Tecbw_y Corporation

I01 Researc_Bfive

Hampt on_/VA_ _666-1340

9. SPONSORING/MONITORING AGENCY NAME{S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

505-64-10-05

B. PERFORMING ORGANIZATION
REPORT NUMBER

1'0. SPONSORING t MONITORING
AGENCY REPORT NUMBER

NASA CR-1896_9

11. SUPPLEMENTARYNOTES

Langley Technical Monitor: Picky W. Butler

Final Report

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified Unlimited

Subject Category 62

13. ABSTRACT (Maximum 200 wordsi

12b, DISTRIBUTION CODE

The application of formal methods to the analysis of computing systems promises

to provide higher and higher levels of assurance as the sophistication of our

tools and techniques increases. Improvements in tools and techniques come about

as we pit the current state of the art against new and challenging problems. A

promisin_ area for the application of formal methods is in real-time and distributed

computing. Some of the algorithms in this area are both subtle and important. In

response to this challenge and as part of an on, Din 8 attempt to verify an

Implementation of the Interactive Convergence Clock Synchronization Algorithm, we

decided to undertake a proof of the correctness of the algorithm using the Boyer-

Moore theorem prover. This paper describes our approach to proving the ICCSA
using the Boyer-Moore prover.

14. SUBJECT TERMS

Interactive Convergence Clock Synchronization Algorithm(ICCSA);

Boyer-Moore Theorem prover; Real-time and Distributed Computing

17. SECURITY CLASSIFICATIOI_ 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

15. NUMBER OF PAGES

46
16. PRICE CODE

20. LIM:TATION OF A._STRACT

S'canc, arO _Orm 298 (Re,' 2-89_

29._ :2j

